log2x+log4x+log16x=49/4 what is the value of x
Answers
Answered by
6
Required Answer:-
Correct Question:
- ㏒₂(x) + ㏒₄(x) + ㏒₁₆ = 49/4
To Find:
- The value of x.
Solution:
Given that,
→ ㏒₂(x) + ㏒₄(x) + ㏒₁₆ = 49/4
Using formula, ㏒ₓ(y) = ㏒(y)/㏒(x), we get,
→ ㏒(x)/㏒(2) + ㏒(x)/㏒(4) + ㏒(x)/㏒(16) = 49/4
→ ㏒(x)/㏒(2) + ㏒(x)/㏒(2²) + ㏒(x)/㏒(2⁴) = 49/4
→ ㏒(x)/㏒(2) + ㏒(x)/[2 ㏒(2)] + ㏒(x)/[4 ㏒(2)] = 49/4
LCM of ㏒(2), 2 ㏒(2) and 4 ㏒(2) is - 4 ㏒(2),
→ [4 ㏒(x) + 2 ㏒(x) + ㏒(x)][4 ㏒(2)] = 49/4
→ [7 ㏒(x)]/[4 ㏒(2)] = 49/4
→ 7/4 × ㏒(x)/㏒(2) = 49/4
→ ㏒(x)/㏒(2) = 49/4 × 4/7
→ ㏒₂(x) = 7
→ x = 2⁷
→ x = 128
→ Hence, the value of x is 128.
Answer:
- x = 128.
Logarithm Formulae:
- ㏒₁₀(x) is same as ㏒(x)
- ㏒ₑ(x) is same as ㏑(x)
- ㏒ₓ(y) = ㏒(y)/㏒(x)
- ㏒(x) + log(y) + ... = ㏒(xy...)
- ㏒(x) - ㏒(y) = ㏒(x/y)
- ㏒(xʸ) = y ㏒(x)
- ㏒(1) = 0
- ㏒ₓ(x) = 1 (x ≠ 1)
- xˡᵒᵍ ᵇᵃˢᵉ ˣ⁽ᵏ⁾ = k
•••♪
Similar questions