Math, asked by alaskan, 1 year ago

log3 x +log9 x +log27 x =11/2

Answers

Answered by sikhi
32
hope it helps you........
Attachments:

alaskan: Thank you somuch
sikhi: ur welcome
Answered by pinquancaro
7

Answer:

The solution of the expression is x=27.

Step-by-step explanation:

Given : Expression \log_3 x+\log_9 x+\log_{27}x=\frac{11}{2}

To find : Solve the expression ?

Solution :

\log_3 x+\log_9 x+\log_{27}x=\frac{11}{2}

\log_3 x+\log_{3^2} x+\log_{3^3}x=\frac{11}{2}

Using logarithmic property, \log_{b^m}a=\frac{1}{m}\log_b a

\log_3 x+\frac{1}{2}\log_{3} x+\frac{1}{3}\log_{3}x=\frac{11}{2}

\log_3 x(1+\frac{1}{2}+\frac{1}{3})=\frac{11}{2}

\frac{11}{6}\log_3 x=\frac{11}{2}

\log_3 x=\frac{11\times 6}{2\times 11}

\log_3 x=3

Using logarithmic property, \log_b a=c\Rightarrow a=b^c

x=3^3

x=27

Therefore, The solution of the expression is x=27.

Similar questions