English, asked by devil623, 1 month ago

Log3(x3-x2-x+1) -log3(x-1) -log3(x+1) =2 s

Answers

Answered by pulakmath007
1

SOLUTION

TO DETERMINE

To solve for x

 \displaystyle \sf{ log_{3}( {x}^{3} -  {x}^{2}  - x + 1 ) - log_{3}( x  - 1 ) - log_{3}( x + 1 )  = 2}

EVALUATION

 \displaystyle \sf{ log_{3}( {x}^{3} -  {x}^{2}  - x + 1 ) - log_{3}( x  - 1 ) - log_{3}( x + 1 )  = 2}

 \displaystyle \sf{ \implies log_{3}[ {x}^{2}(x - 1)  - (x  -  1 )]  -[ log_{3}( x  - 1 ) + log_{3}( x + 1 )]  = 2}

 \displaystyle \sf{ \implies log_{3}[({x}^{2} - 1)(x - 1)]  - log_{3}( x  - 1 )(x + 1)  = 2}

 \displaystyle \sf{ \implies log_{3} \bigg[ \frac{({x}^{2} - 1)(x - 1)}{( x  - 1 )(x + 1)}  \bigg]   = 2}

 \displaystyle \sf{ \implies log_{3} \bigg[ \frac{(x + 1)(x - 1)(x - 1)}{( x  - 1 )(x + 1)}  \bigg]   = 2}

 \displaystyle \sf{ \implies log_{3} \bigg[ (x - 1)  \bigg]   = 2}

 \displaystyle \sf{ \implies  (x - 1)    =  {3}^{2} }

 \displaystyle \sf{ \implies  (x - 1)   = 9 }

 \displaystyle \sf{ \implies  x = 9 + 1 }

 \displaystyle \sf{ \implies  x = 10}

Final Answer :

Hence the required solution is x = 10

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Similar questions