Math, asked by princemb9753, 10 months ago

Log32x + log32(1/8)=1/5, then the value of x is equal to

Answers

Answered by Abhirupa
0

Answer:10

Step-by-step explanation:

Answered by krishnaanandsynergy
0

Answer:

We should find the value of x using the given data and logarithm formula.

Answer: x=16

Step-by-step explanation:

From the given question,

          \log_{32}x+\log_{32}\frac{1}{8}=\frac{1}{5}

  • On the left side base(32) are same in that two terms.
  • Logarithm formula, \log_{a}x+\log_{a}y=\log_{a}xy
  • So our given sum can be written as,

                \log_{32}(x*\frac{1}{8})=\frac{1}{5}

  • Logarithm formula, \log_{a}x=nx=a^ n
  • Now apply the above formula in the above equation.That is,

                           x*\frac{1}{8} =(32)^ \frac{1}{5}

  • 32 can be written as, 2^5.So that,

                           x*\frac{1}{8} =(2^5)^ \frac{1}{5}  

  • Now cancel 5 in the power of 2.So that, we can get the following equation.

                          x*\frac{1}{8} =2  

                                x=8*2        

                                x=16  

  • Final Answer: x=16              
Similar questions