Math, asked by manivishva0499, 11 months ago

log4 2+ log4 32 is equal to​

Answers

Answered by theking20
4

Given,

A logarithmic expression log₄2 + log₄32

To Find,

The value of the logarithmic expression

Solution,

By using the property of logarithm we can change its base as

log₄2 = 1/2 log₂2 = 1/2

log₄32 = 1/2 log₂32 = 5/2

Now, after adding up these values we get,

log₄2 + log₄32 = 1/2 + 5/2

                         = 6/2

                         = 3

Hence, the value of log₄2 + log₄32 is 3.

Answered by pulakmath007
13

\displaystyle \sf{  log_{4}(2)   +  log_{4}(32) } = 3

Given :

\displaystyle \sf{  log_{4}(2)   +  log_{4}(32) }

To find :

To simplify the expression

Formula :

We are aware of the formula on logarithm that

 \sf{1.  \:  \: \:  log( {a}^{n} ) = n log(a)  }

 \sf{2. \:  \:  log(ab) =  log(a)   +  log(b) }

 \displaystyle \sf{3. \:  \:  log \bigg( \frac{a}{b}  \bigg)  =  log(a) -  log(b)  }

 \sf{4. \:  \:   log_{a}(a)   = 1}

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{  log_{4}(2)   +  log_{4}(32) }

Step 2 of 2 :

Simplify the expression

\displaystyle \sf{  log_{4}(2)   +  log_{4}(32) }

\displaystyle \sf{  =  log_{4}(2 \times 32)   }

\displaystyle \sf{  =  log_{4}(64)   }

\displaystyle \sf{  =  log_{4} ({4}^{3} )   }

\displaystyle \sf{  = 3 log_{4} ({4}^{} )   }

\displaystyle \sf{  =  3 \times 1 }

\displaystyle \sf{  =  3  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if 2log x base y=6,then the relation between x and y

https://brainly.in/question/27199002

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Similar questions