Math, asked by medhasri008, 11 months ago

Log5 2.log11 5.log32 11 =

Answers

Answered by ammumisty
1

Step-by-step explanation:

a

log b = log a/logb

= log2/log5 × log5/log11 × log 11/log32

cancel all the same logs & then;

5

=log2/log2 = log2/5 log2

then log2/log 2 cancelled.. remaining

=1/5

formula :-

b

log a = b loga

Answered by pulakmath007
2

\displaystyle \sf{  log_{5}  2 \: .  \: log_{11}  5 \: . \:log_{32}  11 } =  \frac{1}{5}

Given :

\displaystyle \sf{  log_{5}  2 \: .  \: log_{11}  5 \: . \:log_{32}  11 }

To find :

To simplify the expression

Formula :

\displaystyle \sf{  log_{a} b  =  \frac{log \: b}{log \: a} }

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{  log_{5}  2 \: .  \: log_{11}  5 \: . \:log_{32}  11 }

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf{  log_{5}  2 \: .  \: log_{11}  5 \: . \:log_{32}  11 }

\displaystyle \sf{   =  \frac{log \: 2}{log \: 5}   \times \frac{log \: 5}{log \: 11} \times \frac{log \: 11}{log \: 32}}

\displaystyle \sf{   =  \frac{log \: 2}{log \: 32}   }

\displaystyle \sf{   =  \frac{log \: 2}{log \:  {2}^{5} }   }

\displaystyle \sf{   =  \frac{log \: 2}{5log \:  {2}^{} }   }

\displaystyle \sf{   =   \frac{1}{5}  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

2. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

Similar questions