Math, asked by manmithakusuma, 7 months ago

log5(x+5) = 1 then ‘x’ = . . . .

a) 1 b) 0 c) 5 d) -5​

Answers

Answered by Anonymous
9

Given,

 \sf \:  log_{5}(x + 5)  = 1

Base change formula

 \sf \:  log_{a}(b)  =  \dfrac{ log(b) }{ log(a) }

Thus,

 \longrightarrow \sf \dfrac{log_{}(x + 5) }{log(5)} = 1 \\  \\  \longrightarrow \sf log(x + 5)  =  log(5)  \\  \\  \longrightarrow \sf \: x + 5 = 5 \\  \\  \longrightarrow \sf \: x = 0

Option (b) is correct.

Answered by Anonymous
127

♣ Qᴜᴇꜱᴛɪᴏɴ :

\sf{Find\:the\:value\:of\:x\:in\::\:\large\boxed{\sf{log_5\left(x+5\right)=1}}}

★═════════════════★

♣ ᴀɴꜱᴡᴇʀ :

\huge\boxed{\sf{x=0}}

★═════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\large\boxed{\sf{\log _5\left(x+5\right)=1}}

Use the logarithmic definition: If  \sf{ \log _{a}(b)=c \text { then } b=a^{c}}

\log _5\left(x+5\right)=1\quad \Rightarrow \quad \:x+5=5^1

x+5=5^1

x+5=5

Solve x+5=5

\mathrm{Subtract\:}5\mathrm{\:from\:both\:sides}

x+5-5=5-5

\huge\boxed{\sf{x=0}}

Similar questions