Math, asked by mahi839229, 11 months ago

Log5base4=x and log6base5=y then log30 base2=?​

Answers

Answered by Anonymous
3

HEYA \:  \\  \\  log_{4}(5)  = x \:  \:  \:  \:  \: and \:  \:  \:  \:  log_{5}(6) = y \\  \\ \frac{1}{ log_{5}(4) }   = x \:  \:  \:  \: and \:  \:  \:  \: y =  log_{5}(6)  \\  \\ xy =  \frac{ log_{5}(6) }{ log_{5}(4) }  \\  \\ xy =  log_{4}(6)  \\  \\ xy =   log_{2 {}^{2} }(6)  \\  \\ xy =  \frac{1 \times  log_{2}(6) }{2}  \\  \\ 2xy =  log_{2}(6)  \\  \\  log_{2}(30)  =  log_{2}(6)  +  log_{2}(5)  \\  \\  log_{2}(30)  = 2xy +  log_{2}(5)

Answered by Anonymous
1

Answer:

 log_{2}(30) = 2xy + log_{2}(5)

Step-by-step explanation:

\begin{lgathered}\ log_{4}(5) = x \: \: \: \: \: And \: \: \: \: log_{5}(6) = y \\ \\ \frac{1}{ log_{5}(4) } = x \: \: \: \: and \: \: \: \: y = log_{5}(6) \\ \\ xy = \frac{ log_{5}(6) }{ log_{5}(4) } \\ \\ xy = log_{4}(6) \\ \\ xy = log_{2 {}^{2} }(6) \\ \\ xy = \frac{1 \times log_{2}(6) }{2} \\ \\ 2xy = log_{2}(6) \\ \\ log_{2}(30) = log_{2}(6) + log_{2}(5) \\ \\ log_{2}(30) = 2xy + log_{2}(5)\end{lgathered}

Similar questions