log5x +log (2x + 3) = 1 + 2.log(3-x) x < 3
Answers
Explanation:
Solution:
log5x +log (2x + 3) = 1 + 2.log(3-x)
log5x + log(2x + 3) = log10 + log(3-x)2
log(5x.(2x +3)) = log (10.(3-x)2)
5x.(2x +3) = 10.(3-x)2
10x2 +15x = 10.(9-6x + x2)
10x2 + 15x = 90-60x +10x2
75x = 90
✮ Question ✮
log5x +log (2x + 3) = 1 + 2.log(3-x)
Answer :-
Given :
log5x +log (2x + 3) = 1 + 2 log(3-x) x < 3
Have To find
Value of x .
Calculations :-
As we know that ;-
log a + log b = log (a×b)
log 10 = 1
Hence , just applying the identity :-
↠ log 5 x +log ( 2x + 3 ) = 1 + 2 log ( 3-x )
↠ log { ( 5x ) (2x + 3 ) }= log 10 + log ( 3-x )²
Here we use one more identity =
( a - b )² = a² + b² - 2ab .
↠ log { ( 5x ) ( 2x + 3 ) } = log ( 10 ×( 3 - x )² )
↠ 5x ( 2x + 3 ) = 10× ( 3 - x )²
↠ 10x² + 15x = 10 × ( 9 + x² - 6x)
↠ 10x² + 15x = 90 + 10x² - 60x
↠ 10x² - 10x² + 15x + 60x = 90
↠ 75x = 90
↠x = 90 / 75