Math, asked by Raif11, 1 year ago

log6 1 + log6 216/ log6 36

Attachments:

Answers

Answered by nk82456
3
0+3/2log6 6
3/2 is answer
Answered by harendrachoubay
0

The value of x=\dfrac{3}{2}.

Step-by-step explanation:

We have,

\log _61+\dfrac{\log _6216}{\log _636} =x

To find, the value of x = ?

\log _61+\dfrac{\log _6216}{\log _636} =x

\log _66^{0} +\dfrac{\log _66^{3} }{\log _66^{2} } =x

0\times \log _66+\dfrac{3\times \log _66}{2\times \log _66} =x

[ ∵ \log a^{m} =m\log a]

0\times 1+\dfrac{3\times 1}{2\times 1} =x

[ ∵ \log_aa =1]

0+\dfrac{3}{2} =x

\dfrac{3}{2} =x

x=\dfrac{3}{2}

Hence, the value of x=\dfrac{3}{2}.

Similar questions