Math, asked by shazanuljafar20, 3 months ago

log81/log27=x

Then what is the value of x..

No spam,or copy pasting else report!!!​

Answers

Answered by NoobTexts
5

Answer:

4/3

Step-by-step explanation:

  \frac{ log(81) }{ log(27) }  = x \\  \frac{ log( {3}^{4} ) }{ log( {3}^{3} ) }  = x \\  \frac{4 log(3) }{3 log(3) }  = x \\  \frac{4}{3}  = x

Answered by BlessedOne
29

Given :

  • \tt\:\frac{log~81}{log~27}=x

To find :

  • The value of x.

Some formula to know while dealing with log problems :

\sf\:log_{a}(MN)=log_{a}M+log_{a}N

\sf\:log_{a}(\frac{M}{N})= log_{a}M-log_{a}N

\sf\:log_{a}M^{n}=nlog_{a}M

Solution :

\tt\:\frac{log~81}{log~27}=x

\tt\:oR\:x=\frac{log~81}{log~27}

  • 81 = 3 × 3 × 3 × 3

  • 27 = 3 × 3 × 3

\tt:\implies\:x=\frac{log~3 \times 3 \times 3 \times 3}{log~3 \times 3 \times 3}

\tt:\implies\:x=\frac{log~3^{4}}{log~3^{3}}

Using the third formula mentioned above

\tt:\implies\:x=\frac{4~log~3}{3~log~3}

\tt:\implies\:x=\frac{4}{3}

\small{\underline{\boxed{\mathrm{:\implies\:x=1\frac{1}{3}}}}}

‎____________________

Henceforth the required value of x -

\:~~~~~~~~~~~~~~~~~~~~ \bf\dag \bf\color{cyan}{\:\frac{4}{3}~oR~1\frac{1}{3}}

Similar questions