Math, asked by vaishnavib37, 8 months ago

Log8X=2 and Log6Y=3. Find Log8 (X+Y)?​


amitnrw: please rewrite clearly mentioning base of log

Answers

Answered by Swarup1998
2

Given:

  • log_{8}X=2,\quad log_{6}Y=3

To find:

  • log_{8}(X+Y)

Solution:

  • Now, log_{8}X=2

  • \Rightarrow \frac{logX}{log8}=2

  • \Rightarrow logX=2\:log8

  • \Rightarrow logX=log(8^{2})

  • \Rightarrow logX=log64

  • \Rightarrow X=64

  • and log_{6}Y=3

  • \Rightarrow \frac{logY}{log6}=3

  • \Rightarrow logY=3\:log6

  • \Rightarrow logY=log(6^{3})

  • \Rightarrow logY=log216

  • \Rightarrow Y=216

  • Now, log_{8}(X+Y)
  • =log_{8}(64+216)
  • =log_{8}(280)

Answer: log_{8}(X+Y)=log_{8}(280)

Remember:

  • log_{a}(b)=\frac{log_{c}(a)}{log_{c}(b)}
Similar questions