Math, asked by abidiahsan90, 3 months ago

[log9√3√3√3] log10 0.01= ?​

Answers

Answered by MaheswariS
5

\underline{\textbf{Given:}}

\mathsf{(log_9\sqrt{3}\sqrt{3}\sqrt{3}){\times}log_{10}0.01}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{(log_9\sqrt{3}\sqrt{3}\sqrt{3}){\times}log_{10}0.01}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{(log_9\sqrt{3}\sqrt{3}\sqrt{3}){\times}log_{10}0.01}

\mathsf{=(log_93\sqrt{3}){\times}log_{10}\left(\dfrac{1}{100}\right)}

\mathsf{=(log_99^\frac{1}{2}9^\frac{1}{4}){\times}log_{10}\left(\dfrac{1}{10^2}\right)}

\mathsf{=(log_99^\frac{1}{2}+log_99^\frac{1}{4}){\times}log_{10}10^{-2}}

\mathsf{Using,}

\boxed{\mathsf{log_aM^n=n\;log_aM}}

\mathsf{=\left(\dfrac{1}{2}log_99+\dfrac{1}{4}log_99\right){\times}(-2\,log_{10}10)}

\mathsf{=\left(\dfrac{1}{2}(1)+\dfrac{1}{4}(1)\right){\times}(-2(1))}

\mathsf{=\left(\dfrac{1}{2}(1)+\dfrac{1}{4}(1)\right){\times}(-2(1))}

\mathsf{=\dfrac{3}{4}{\times}(-2)}

\mathsf{=\dfrac{-3}{2}}

\underline{\textbf{Find more:}}

Expand log 243 to the base 3 root 3

https://brainly.in/question/4637472  

The value of log 0.001 to the base 0.1 is

https://brainly.in/question/5318106

Similar questions