log9 (3log2 (1 + log3 (1 + 2log2x))) = \\frac{1}{2}\\). Find x.
4
\\frac{1}{2}\\)
1
2
Anonymous:
___k off
Answers
Answered by
5
Given:
Log9 (3log2 (1 + log3 (1 + 2log2x))) = frac{1}{2}).
To find:
Find x.
Solution:
From given we have,
Log9 (3log2 (1 + log3 (1 + 2log2x))) = frac{1}{2}).
log _9(3log _2(1+log _3(1+2\log _2(x)))) = 1/2
3log _2(1+log _3(1+2log _2(x))) = \sqrt{9}
3log _2(1+log _3(1+2log _2(x))) = \sqrt{3^2}
3log _2(1+log _3(1+2log _2(x))) = 3
log _2(1+log _3(1+2log _2(x))) = 1
1+log _3(1+2log _2(x)) = 2^1
log _3(1+2log _2(x))-1 = 2-1
log _3(1+2log _2(x)) = 1
1+2log _2(x) = 3^1
2log _2(x)-1 = 3-1
2log _2(x) = 2
log _2(x) = 1
x = 2^1
x = 2
Therefore, the value of x is 2
Similar questions