Math, asked by Anonymous, 1 month ago

[ Logarithm ]
Solve the given question ​

Attachments:

Answers

Answered by user0888
10

\boxed{\textsf{Answer}}

\text{\underline{Step A: Finding the Power}}

First, let's evaluate the power.

Let,

\hookrightarrow A=\dfrac{1}{3\sqrt{2}},\ B=4

Then we need to find

\hookrightarrow 6+\log_{\frac{3}{2}}(A\sqrt{B-A\sqrt{B-A\sqrt{B\cdots} } } )

So let

\hookrightarrow X=A\sqrt{B-A\sqrt{B-A\sqrt{B\cdots } } }.

By squaring both sides,

\hookrightarrow X^{2}=A^{2}(B-A\sqrt{B-A\sqrt{B-A\sqrt{B\cdots } } }  )

\hookrightarrow X^{2}=A^{2}(B-X)

\hookrightarrow X^{2}+A^{2}X-A^{2}B=0

Let's solve the quadratic equation. Substitute the values of A and B we get,

\hookrightarrow X^{2}+\dfrac{1}{18} X-\dfrac{2}{9} =0

\hookrightarrow 18X^{2}+X-4=0

\hookrightarrow (9X-4)(2X+1)=0

\hookrightarrow X=\dfrac{4}{9} \ \text{or}\ X=-\dfrac{1}{2}

The second solution gets rejected, as square roots are non-negative.

Hence, the value of the power is X=\dfrac{4}{9}.

\text{\underline{Step B: Using Logarithm Rules}}

The logarithm,

\hookrightarrow 6+\log_{\frac{3}{2} }\dfrac{4}{9}

\hookrightarrow 6+\log_{\frac{3}{2}}\left(\dfrac{3}{2} \right)^{-2}

\hookrightarrow 6-2\ \text{[Exponent Rule of Logarithm]}

\hookrightarrow 4 \ \text{\underline{(ANSWER.)}}

\boxed{\textsf{Conclusion}}

Hence, the required answer is 4.

Similar questions