Math, asked by varadchaudhar0911, 4 months ago

LOGARITHM SUM IMAGE ATTACHED PLEASE CHECK​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

x =  \frac{ {e}^{y} -  {e}^{ - y}  }{ {e}^{y} +  {e}^{ - y}  }  \\

 \implies \frac{1}{x}  =  \frac{ {e}^{y}  +  {e}^{ - y} }{ {e}^{y} -  {e}^{ - y}  }  \\

Using componendo and dividendo

 \implies \frac{1 + x}{1 - x}  =  \frac{ {e}^{y}  +  {e}^{ - y} +  {e}^{y} -  {e}^{ - y}   }{ {e}^{y}  +  {e}^{ - y} -  {e}^{y} +  {e}^{ - y}   }  \\

 \implies \frac{1 + x}{1  - x}  =  \frac{2 {e}^{y} }{2 {e}^{ - y} }  \\

 \implies \frac{1 + x}{1 - x}  =  \frac{ {e}^{y} }{ {e}^{ - y} }  \\

Taking log both sides,

 \implies log( \frac{1 + x}{1 - x} )  =  log( \frac{ {e}^{y} }{ {e}^{ - y} } )  \\

 \implies log( \frac{1 + x}{1 - x} )  =  log( \frac{ {e}^{y} }{ {e}^{ - y} } )  \\

 \implies log( \frac{1 + x}{1 - x} )  =  log( {e}^{y} )  -  log( {e}^{ - y} )  \\

 \implies log( \frac{1 + x}{1 - x} )  = y log(e)  + y log(e)  \\

 \implies log( \frac{1 + x}{1 - x} )  = 2y \\

 \implies y = \frac{1}{2}  log( \frac{1 + x}{1 - x} )   \\

Similar questions