Math, asked by pallapusailohith, 1 day ago

LOGARITHMS If x^2 + y² = 34xy , show that log(x - y) + log(x + y) = (7/2)log 2 + log 3 + log x + log y ..Please answer this question fast...

Answers

Answered by nitishschoolthepupil
0

Answer:

For x>0,y>0, we have

x2+y2=34xy⇒x2+2xy+y2=34xy+2xy

⇒(x+y)2=36xy⇒(x+y6)2=xy

⇒2log(x+y6)=log(xy)

⇒log(x+y6)=12(log(x)+log(y))

Answered by LaeeqAhmed
1

 {x}^{2}  +  {y}^{2}  = 34xy

 \sf \purple{adding \: 2xy \: on \: both \: sides}

 \implies  {x}^{2}  +  {y}^{2}  + 2xy = 34xy +2 xy

\implies  {(x + y)}^{2}  = 36xy

 \sf \purple{applying \: log \: on \: both \:sides}

 \implies   \log(x + y) ^{2}  =   \log(36xy)

 \implies   2\log(x + y)   =   \log(36xy)

 \implies   \log(x + y)   =    \frac{\log(36xy) }{2} \:  \: ...(1)

 \\  {x}^{2}  +  {y}^{2}  = 34xy

 \sf \purple{subtracting \: 2xy \: on \: both \: sides}

  \implies{x}^{2}  +  {y}^{2}  - 2xy = 34xy - 2xy

  \implies{(x - y)}^{2} = 32xy

 \sf \purple{applying \: log \: on \: both \:sides}

  \implies \log{(x - y)}^{2} = \log( 32xy )

  \implies 2\log{(x - y)}= \log( 32xy )

 \implies \log{(x - y)}=  \frac{\log( 32xy )}{2} \:  \: ...(2)

 \sf \purple{adding \: (1) \: and \: (2)}

 \implies \log(x + y)  + \log(x  -  y)  =    \frac{\log(36xy) }{2} +  \frac{\log(32xy) }{2}

 \implies \log(x + y)  + \log(x  -  y)  =    \frac{1}{2} ( \log 36xy+  \log  32xy )

 \implies \log(x + y)  + \log(x  -  y)  =    \frac{1}{2} ( \log 36 +  \log x +  \log y+  \log  32  + \log x  + \log y )

 \implies \log(x + y)  + \log(x  -  y)  =    \frac{1}{2} ( \log 36 +   \log32 + 2\log x +2  \log y)

 \implies \log(x + y)  + \log(x  -  y)  =    \frac{1}{2} ( 2\log 2 +2 log3 +   2\log2  + 3 \log2+ 2\log x +2  \log y)

 \implies \log(x + y)  + \log(x  -  y)  =    \frac{1}{2} ( 7\log 2 +2  \log3 +    2\log x +2  \log y)

 \orange{ \therefore \log(x + y)  + \log(x  -  y)  =    (\frac{7}{2} )\log 2 +  \log3 +    \log x + \log y)}

HOPE IT HELPS!!

Similar questions