logbase10(x²-3x+6)=1
Answers
ANSWER
ANSWERGiven: log
ANSWERGiven: log 10
ANSWERGiven: log 10
ANSWERGiven: log 10 (x
ANSWERGiven: log 10 (x 2
ANSWERGiven: log 10 (x 2 −3x+6)=1
ANSWERGiven: log 10 (x 2 −3x+6)=1log
ANSWERGiven: log 10 (x 2 −3x+6)=1log 10
ANSWERGiven: log 10 (x 2 −3x+6)=1log 10
ANSWERGiven: log 10 (x 2 −3x+6)=1log 10 (x
ANSWERGiven: log 10 (x 2 −3x+6)=1log 10 (x 2
ANSWERGiven: log 10 (x 2 −3x+6)=1log 10 (x 2 −3x+6)=log
ANSWERGiven: log 10 (x 2 −3x+6)=1log 10 (x 2 −3x+6)=log 10
ANSWERGiven: log 10 (x 2 −3x+6)=1log 10 (x 2 −3x+6)=log 10
ANSWERGiven: log 10 (x 2 −3x+6)=1log 10 (x 2 −3x+6)=log 10 10.......(1) [since log
ANSWERGiven: log 10 (x 2 −3x+6)=1log 10 (x 2 −3x+6)=log 10 10.......(1) [since log a
ANSWERGiven: log 10 (x 2 −3x+6)=1log 10 (x 2 −3x+6)=log 10 10.......(1) [since log a
ANSWERGiven: log 10 (x 2 −3x+6)=1log 10 (x 2 −3x+6)=log 10 10.......(1) [since log a a=1]
From (1):
From (1):x
From (1):x 2
From (1):x 2 −3x+6=10
From (1):x 2 −3x+6=10⇒x
From (1):x 2 −3x+6=10⇒x 2
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0⇒(x−4)(x+1)=0
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0⇒(x−4)(x+1)=0⇒x=−1 or 4
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0⇒(x−4)(x+1)=0⇒x=−1 or 4But we should also check that f(x)=x
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0⇒(x−4)(x+1)=0⇒x=−1 or 4But we should also check that f(x)=x 2
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0⇒(x−4)(x+1)=0⇒x=−1 or 4But we should also check that f(x)=x 2 −3x+6>0 for x=−1,4........[for
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0⇒(x−4)(x+1)=0⇒x=−1 or 4But we should also check that f(x)=x 2 −3x+6>0 for x=−1,4........[for log
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0⇒(x−4)(x+1)=0⇒x=−1 or 4But we should also check that f(x)=x 2 −3x+6>0 for x=−1,4........[for log a
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0⇒(x−4)(x+1)=0⇒x=−1 or 4But we should also check that f(x)=x 2 −3x+6>0 for x=−1,4........[for log a
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0⇒(x−4)(x+1)=0⇒x=−1 or 4But we should also check that f(x)=x 2 −3x+6>0 for x=−1,4........[for log a N; N>0]
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0⇒(x−4)(x+1)=0⇒x=−1 or 4But we should also check that f(x)=x 2 −3x+6>0 for x=−1,4........[for log a N; N>0]f(−1)=(−1)
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0⇒(x−4)(x+1)=0⇒x=−1 or 4But we should also check that f(x)=x 2 −3x+6>0 for x=−1,4........[for log a N; N>0]f(−1)=(−1) 2
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0⇒(x−4)(x+1)=0⇒x=−1 or 4But we should also check that f(x)=x 2 −3x+6>0 for x=−1,4........[for log a N; N>0]f(−1)=(−1) 2 −3(−1)+6=10>0
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0⇒(x−4)(x+1)=0⇒x=−1 or 4But we should also check that f(x)=x 2 −3x+6>0 for x=−1,4........[for log a N; N>0]f(−1)=(−1) 2 −3(−1)+6=10>0f(4)=4
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0⇒(x−4)(x+1)=0⇒x=−1 or 4But we should also check that f(x)=x 2 −3x+6>0 for x=−1,4........[for log a N; N>0]f(−1)=(−1) 2 −3(−1)+6=10>0f(4)=4 2
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0⇒(x−4)(x+1)=0⇒x=−1 or 4But we should also check that f(x)=x 2 −3x+6>0 for x=−1,4........[for log a N; N>0]f(−1)=(−1) 2 −3(−1)+6=10>0f(4)=4 2 −3(4)+6=10>0
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0⇒(x−4)(x+1)=0⇒x=−1 or 4But we should also check that f(x)=x 2 −3x+6>0 for x=−1,4........[for log a N; N>0]f(−1)=(−1) 2 −3(−1)+6=10>0f(4)=4 2 −3(4)+6=10>0Hence both values are satisfying the condition.
From (1):x 2 −3x+6=10⇒x 2 −3x−4=0⇒(x−4)(x+1)=0⇒x=−1 or 4But we should also check that f(x)=x 2 −3x+6>0 for x=−1,4........[for log a N; N>0]f(−1)=(−1) 2 −3(−1)+6=10>0f(4)=4 2 −3(4)+6=10>0Hence both values are satisfying the condition.So, x=−1,4
Step-by-step explanation:
Given: lg10(x ^2 −3x+6)=1
log 10 (x^ 2 −3x+6)=log10.......(1)
[since log a=1]
From (1):
x^2 −3x+6=10
⇒x°2 −3x−4=0
⇒(x−4)(x+1)=0
⇒x=−1 or 4
But we should also check that f(x)=x^2 −3x+6>0 for x=−1,4........[for
log a N; N>0]
f(−1)=(−1)^2 −3(−1)+6=10>0
f(4)=(4)^2 −3(4)+6=10>0
Hence both values are satisfying the condition.
So, x=−1,4