Logbase3 logbase2 logbase root 3 81=1
Answers
Answer:
❤️❤️ see solution in image ❤️❤️
Answer:
1
Step-by-step explanation:
Given--->
log₃ { log₂ (log 81) }
√3
To find ---> Value of given expression
Solution--->
We have some formulee of log
1) log xⁿ = n logx
2) log ₙ n = 1
3) log ₙ m = logm / logn
Applying these formulee first we solve
log 81 = log 81 / log √3
√3
= log 3⁴ / log (3)¹/²
= 4 log 3 / (1/2) log 3
log 3 cancel out from numerator and denominator
= 4 × 2
= 8
Now concentrating on original problem
log { log (log 81 ) }
3 2 √3
= log { log ( 8 ) }
3 2
= log { log ( 2 × 2 × 2 ) }
3 2
= log { log ( 2³ ) }
3 2
= log ( 3 log 2 )
3 2
= log ( 3 × 1)
3
= log 3
3
= 1