Math, asked by AniketSatpathy, 1 year ago

logx+1(x^2+x-6)^2 =4

Attachments:

Answers

Answered by MaheswariS
11

\textbf{Given:}

\mathsf{log_{x+1}(x^2+x-6)^2=4}

\textbf{To find:}

\textsf{The values of x}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{log_{x+1}(x^2+x-6)^2=4}

\mathsf{(x+1)^4=(x^2+x-6)^2}

\mathsf{((x+1)^2)^2-(x^2+x-6)^2=0}

\mathsf{(x^2+2x+1)^2-(x^2+x-6)^2=0}

\mathsf{(x^2+2x+1+x^2+x-6)(x^2+2x+1-x^2-x+6)=0}

\mathsf{(2x^2+3x-5)(x+7)=0}

\mathsf{(2x^2+5x-2x-5)(x+7)=0}

\mathsf{(x(2x+5)-1(2x+5))(x+7)=0}

\mathsf{(x-1)(2x+5)(x+7)=0}

\implies\boxed{\mathsf{x=1,\dfrac{-5}{2},-7}}

\textbf{Find more:}

Solve log_(3-4x^(2))(9-16x^(4))=2+(1)/(log _(2)(3-4x^(2)))​

https://brainly.in/question/21285909

Similar questions