Math, asked by mbhanuteja770, 9 months ago

logx 32=10/3 find x​

Answers

Answered by kp886705
0

Answer:

logx=1/x

1/x×32=10/3

32/x=10/3

10x=96

x=96/10

x=9.6

Answered by harendrachoubay
1

The value of x=2\sqrt{2}

Step-by-step explanation:

We have,

\log_x 32=\dfrac{10}{3}

To find, the value of x = ?

\log_x 32=\dfrac{10}{3}

\log_x 2^5=\dfrac{10}{3}

[ ∵ 32 = 2 × 2 × 2 × 2 × 2]

5\log_x 2=\dfrac{10}{3}

[ ∵ \log a^m= m\log a]

\log_x 2=\dfrac{10}{3\times 5}

\log_x 2=\dfrac{2}{3}

By property of logarithm,  

x^{\frac{2}{3}}=2

x=2^{\dfrac{3}{2}}

x=2\sqrt{2}

Hence, the value of x=2\sqrt{2}

Similar questions