Math, asked by kritikriti055, 5 months ago

logx (8x - 3) - logx 4 = 2.​

Answers

Answered by Anonymous
0

Answer:

................... ..........

Answered by Arceus02
0

Given:-

  •  \sf   log_{x}(8x - 3)  -  log_{x}(4)  = 2

\\

To find:-

  • The value of x

\\

Answer:-

Given that,

 \sf   log_{x}(8x - 3)  -  log_{x}(4)  = 2

We know that,

 \red{ \bigstar} \boxed{ \sf{ log_{b}(a)  -  log_{b}(c)  =  log_{b}   \bigg( \dfrac{a}{c}    \bigg) }}

So, we can write the given equation as,

 \sf  \longrightarrow   log_{x}  \bigg \{ \dfrac{  (8x - 3)}{4}  \bigg \}   = 2

We know that,

 \blue{ \bigstar} \boxed{ \sf{ if \:  log_{b}(a)  = c, \: then \: a =  {b}^{c} }}

(this is know as exponential form)

So, writing in exponential form,

  \sf  \longrightarrow  \dfrac{8x - 3}{4}  =  {x}^{2}

  \sf \longrightarrow 8x - 3 = 4 {x}^{2}

  \sf \longrightarrow  4 {x}^{2}  - 8x + 3 = 0

On splitting the middle term,

  \sf \longrightarrow  4 {x}^{2}  - 2x - 6x + 3 = 0

  \sf \longrightarrow  2x(2x - 1) - 3(2x - 1) = 0

  \sf \longrightarrow  (2x - 1)(2x - 3)= 0

So,

If (2x - 1) = 0,

 \sf 2x - 1 = 0

 \longrightarrow \underline{ \underline{ \sf{ \green{ x_{1}  =  \dfrac{1}{2} }}}}

If (2x - 3) = 0,

 \sf 2x - 3 = 0

 \longrightarrow \underline{ \underline{ \sf{ \green{ x_{2}  =  \dfrac{3}{2} }}}}

(Both of these solutions follows the conditions necessary for logarithm).

Similar questions