Math, asked by kanchjinikiij, 1 year ago

logx/log5=log9/log1/3

Answers

Answered by mysticd
41
i hope this will usful to u
Attachments:
Answered by pinquancaro
13

Answer:

The value of x is 0.04.    

Step-by-step explanation:

Given : Expression \frac{\log x}{\log 5}=\frac{\log 9}{\log \frac{1}{3}}

To find : Solve for x?

Solution :

Expression \frac{\log x}{\log 5}=\frac{\log 9}{\log \frac{1}{3}}

\frac{\log x}{\log 5}=\frac{\log 3^2}{\log 3^{-1}}

Apply logarithmic property,

\log a^x=x\log a

\frac{\log x}{\log 5}=\frac{2\log 3}{-1\log 3}

Cancel \log 3

\frac{\log x}{\log 5}=-2

Applying logarithmic property, \frac{\log a}{\log b}=\log_b a

\log_5 x=-2

Again using logarithmic property,

\log_b a=x\\\Rightarrow a=x^b

x=5^{-2}

x=\frac{1}{5^2}

x=\frac{1}{25}

x=0.04

Therefore, The value of x is 0.04.

Similar questions