Math, asked by sahjeenal9546, 17 days ago

logxbasek.logkbase5 = 3 ,then x=

Answers

Answered by kheteshwarkp
1

Step-by-step explanation:

logx/logk. logk/log5=3

logx/log5=3

logx base5=3

X=5^3=125

Make my answer as brainlist please

Answered by anindyaadhikari13
10

Solution:

Given That:

 \rm \longrightarrow log_{k}(x) \times  log_{5}(k)  = 3

 \rm \longrightarrow log_{k}(x) \times \dfrac{1}{ log_{k}(5) }   = 3

 \rm \longrightarrow \dfrac{ log_{k}(x)}{ log_{k}(5) }   = 3

 \rm \longrightarrow  log_{5}(x)  =  3

 \rm \longrightarrow  x =  {5}^{3}

 \rm \longrightarrow  x = 125

★ Therefore, the value of x satisfying the given equation is 125.

Answer:

  • The value of x is 125.

Basic Concepts Required:

 \rm1. \:  \:  log_{a}(b) =  \dfrac{1}{ log_{b}(a) }

 \rm2. \:  \: \dfrac{ log_{a}(x) }{ log_{a}(y) }  =  log_{y}(x)

 \rm3. \:  \:  log_{a}(x) = y  \: or \: x =  {a}^{y}

More To Know:

 \rm 1. \:  \: log_{a}(1)  = 0, \: a \neq0,1

 \rm 2. \:  \: log_{a}(a)  = 1, \: a \neq0,1

 \rm 3. \:  \: log_{a}(x)  = log_{a}(y) \implies x = y

 \rm 4. \:  \: log_{e}(x) =  ln(x)

 \rm5. \:  \:  log_{a}(x) + log_{a}(y) = log_{a}(xy)

 \rm6.\:  \:  log_{a}(x) - log_{a}(y) = log_{a} \bigg( \dfrac{x}{y} \bigg)

 \rm 7.\:  \: log_{a}( {x}^{n} ) =  n\log_{a}(x)

Similar questions