Math, asked by pravina9280, 4 months ago

long, 8 m wide and 10 m high.
6. The volume of a wooden plank is 33,750 cu. cm. If cuboidal pieces measuring
30 cm in length, 15 cm in width and 5 cm in height have to be cut from the
wooden plank, how many pieces of cuboids can be cut from it?​

Answers

Answered by SarcasticL0ve
18

\sf Given \begin{cases} & \sf{Volume\:of\:wooden\:plank = \bf{33750\:cm^3}}  \\ & \sf{Length\:of\:cuboidal\: pieces = \bf{30\:cm}} \\ & \sf{Breadth\:of\:cuboidal\: pieces = \bf{30\:cm}} \\ & \sf{Height\:of\:cuboidal\:pieces = \bf{5\:cm}} \end{cases}\\ \\

To find: Number of pieces that can be cut from Wooden Plank?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

☯ Let number of cuboidal pieces be n.

⠀⠀⠀

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

:\implies\sf Volume_{\:(wooden\:plank)} = n \times Volume_{\:(cuboidal\:piece)}\\ \\ \\ :\implies\sf 33750 = n \times \bigg\lgroup 30 \times 15 \times 5 \bigg\rgroup\\ \\ \\ :\implies\sf 33750 = n \times 2250\\ \\ \\ :\implies\sf n = \cancel{ \dfrac{33750}{2250}}\\ \\ \\:\implies{\underline{\boxed{\frak{\purple{n = 15}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Thus,\:20\:cuboidal\:pieces\:can\:be\;cut\:from\:wooden\:plank.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\qquad\qquad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:More\:to\:know\:\bigstar}}}} \\  \\

  • \sf Volume\:of\:cuboid = l \times b \times h

  • \sf Total\:surface\:area\:of\:cuboid = 2(lb + bh + hl)

  • \sf Curved\:surface\:area\:of\:cuboid = 2(l + b)h

  • \sf Diagonal\:of\:cuboid = \sqrt{l^2 + b^2 + h^2}
Answered by Anonymous
14

Answer:

 \huge \frak {Given}

  • Volume of park = 33,750 cm³
  • Length of cuboidal pieces =30 cm
  • Breadth of cuboidal pieces = 15 cm
  • Height of cuboidal pieces = 5 cm

  \huge \frak{To  \: Find}

Total pieces

 \huge \frak{Solution}

Let the total cuboid be x

Firstly we will find volume of cuboidal box.

 \bf \red{Volume \:  = l \times b \times h}

 \tt \mapsto \: Volume = 30 \times 15 \times 5

 \tt \mapsto \: Volume = 150 \times 15

  \tt \mapsto  Volume = 2250 \:  {cm}^{3}

 \bf x =  \dfrac{33750}{2250}

 \mathfrak \red{x \:  = 15}

Hence :-

15 boxes are required

Learn More :-

  • Area of circle = πr²
  • Area of rectangle = length × Breadth
  • Volume of cube = side³
  • TSA of cuboid = 2(lb + bh + lh)
Similar questions