LONG ANSWER TYPE QUESTIONS 1. If A+B+C = 180°, prove that B i) sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
please answer it guys urgent
Answers
Answered by
1
Answer:
PLZ HELP ME MARK ME AS BRAINLIEST ANS
Step-by-step explanation:
A+B+C=180
LHS=sin2A+sin2B+sin2C
=2sin(A+B)cos(A−B)+2sinCcosC
=2sinCcos(A−B)+2sinCcosC
=2sinC(cos(A−B)+cosC)
=2sinC(cos(A−B)−cos(A+B))
=2sinC2sinAsinB
=4sinAsinBsinC
=RHS
Answered by
0
Answer:
please mark me as BRAINLIST please
Step-by-step explanation:
A+B+C=180
A+B+C=180LHS= sin2A+sin2B+sin2C
sin2A+sin2B+sin2C=2sin(A+B)cos(A−B)+2sinCcosC
sin2A+sin2B+sin2C=2sin(A+B)cos(A−B)+2sinCcosC=2sinCcos(A−B)+2sinCcosC
sin2A+sin2B+sin2C=2sin(A+B)cos(A−B)+2sinCcosC=2sinCcos(A−B)+2sinCcosC=2sinC(cos(A−B)+cosC)
sin2A+sin2B+sin2C=2sin(A+B)cos(A−B)+2sinCcosC=2sinCcos(A−B)+2sinCcosC=2sinC(cos(A−B)+cosC)=2sinC(cos(A−B)−cos(A+B))
sin2A+sin2B+sin2C=2sin(A+B)cos(A−B)+2sinCcosC=2sinCcos(A−B)+2sinCcosC=2sinC(cos(A−B)+cosC)=2sinC(cos(A−B)−cos(A+B))=2sinC2sinAsinB
sin2A+sin2B+sin2C=2sin(A+B)cos(A−B)+2sinCcosC=2sinCcos(A−B)+2sinCcosC=2sinC(cos(A−B)+cosC)=2sinC(cos(A−B)−cos(A+B))=2sinC2sinAsinB=4sinAsinBsinC
sin2A+sin2B+sin2C=2sin(A+B)cos(A−B)+2sinCcosC=2sinCcos(A−B)+2sinCcosC=2sinC(cos(A−B)+cosC)=2sinC(cos(A−B)−cos(A+B))=2sinC2sinAsinB=4sinAsinBsinC=RHS
Similar questions