long division method in algebraic expression :
2x³ - 8x² + 5x - 8 by x - 2
pls tell me the answer first I mark you as brainliest
Answers
Step-by-step explanation:
Given :-
2x³ - 8x² + 5x - 8
To find :-
Divide 2x³ - 8x² + 5x - 8 by x - 2 ?
Solution :-
Given algebraic expression is 2x³ - 8x² + 5x - 8
Divisor = x-2
x-2) 2x³ - 8x² + 5x - 8 (2x²-4x-3
2x³ -4x²
(-) (+)
_______________
0 -4x² +5x
-4x² +8x
(+) (-)
________________
0 -3x-8
-3x+6
(+) (-)
_________________
-14 -Remainder
__________________
Answer :-
Quotient = 2x²-4x-3
Remainder = -14
Check:-
We have
Given algebraic expression is
2x³ - 8x² + 5x - 8
Divisor = x-2
Quotient = 2x²-4x-3
Remainder = -14
Division Algorithm on Polynomials is
p(x) = g(x)q(x) +r(x)
=> (x-2)(2x²-4x-3)+(-14)
=> (x)(2x²-4x-3)-2(2x²-4x-3)-14
=> 2x³-4x²-3x-4x²+8x+6-14
=> 2x2+(-4x²-4x²)+(8x-3x)+(6-14)
=> 2x³-8x²+5x-8
=> p(x)
=> given algebraic expression
Verified the given relations in the given problem.
Used formulae:-
Division Algorithm on Polynomials is
p(x) = g(x)q(x) +r(x)
Where ,
- p(x)=Dividend
- g(x)=Divisor
- q(x)=Quotient
- r(x) = Remainder
Used Method:-
Long Division method