# Longest Common Subsequence using Dynamic Programming (else if the last three digits of your
student id is divisible by 5)
Answers
Answer:
LCS Problem Statement: Given two sequences, find the length of longest subsequence present in both of them. ... Note that it takes O(n) time to check if a subsequence is common to both the strings. This time complexity can be improved using dynamic programming.
Explanation:
/* A Naive recursive implementation of LCS problem */
#include <bits/stdc++.h>
using namespace std;
int max(int a, int b);
/* Returns length of LCS for X[0..m-1], Y[0..n-1] */
int lcs( char *X, char *Y, int m, int n )
{
if (m == 0 || n == 0)
return 0;
if (X[m-1] == Y[n-1])
return 1 + lcs(X, Y, m-1, n-1);
else
return max(lcs(X, Y, m, n-1), lcs(X, Y, m-1, n));
}
/* Utility function to get max of 2 integers */
int max(int a, int b)
{
return (a > b)? a : b;
}
/* Driver code */
int main()
{
char X[] = "AGGTAB";
char Y[] = "GXTXAYB";
int m = strlen(X);
int n = strlen(Y);
cout<<"Length of LCS is "<< lcs( X, Y, m, n ) ;
return 0;
}