Math, asked by rajusetu, 1 year ago

look at the attachement an dsolve them

Attachments:

rajusetu: you should prove them

Answers

Answered by kvnmurty
1
these are all simple exercises,  you need to just substitute the values of trigonometric ratios and simply the expressions.  that is all.



tan² A - Sin² A = Sin²A / Cos² A -  Sin² A
       = Sin² A sec²A - Sin²A
       = Sin ² A ( sec²A - 1)
       = sin² A  tan²A =  sin² A  sin²A  / cos²A
======================
ii
   multiply the two terms to get
   1+tan A+sec A+cot A+1+cotA SecA - CosecA - cosecA tan A - cosecA secA
       = 2 + tanA + secA +cosA/sinA + cosA/sinA *1/cosA - 1/sinA - 1/sinA*sinA/cosA - 1/sinA * 1/cosA
       = 2 + sinA/cosA + 1/cosA +CosA/sinA+ 1/sinA -1/sinA - 1/cosA - 1/sinA*1/cosA
     = 2 + sinA/cosA + cosA/sinA - 1/sinA * 1/cosA
   = 2 + (sin²A +cos²A - 1 ) / (sinA cosA)
  =  2
======================
      LHS    1/(cosecA- cotA) - 1/sin A
multiply numerator and denominator  with (coseA+ cotA)
           (cosecA + cotA)/ 1  - cosec A  = cot A 

       RHS      1/sinA  -  1/ (cosecA + cotA)
 multiply numerator and denominator with  (cosec A - cot A)

  cosec A -  (cosecA - cotA) / (cosec²A - cot²A)

  =  cot A

  LHS = RHS = cot A
========================

(cot A + tan B) / ( cot B + tan A)  = 
       = (cosA / sinA +  sin B / cosB )    /   (cosB/sinB + sin A/ cosA)
   =  (cosA cosB + sinA sin B) * CosA sin B /  [ (cosA cosB + sinA sinB) * sinA cos B ]
  = cot A    tan B
   as the summation term cancels.
 




kvnmurty: these are all simple exercises, you need to just substitute the values of trigonometric ratios and simply the expressions. that is all.
kvnmurty: click on thanks blue button above pls
rajusetu: yes sir that thanks one i clicked
rajusetu: sir look at commnet i posted plzzzzzzz
Similar questions