look at the attachement an dsolve them
Attachments:
rajusetu:
you should prove them
Answers
Answered by
1
these are all simple exercises, you need to just substitute the values of trigonometric ratios and simply the expressions. that is all.
tan² A - Sin² A = Sin²A / Cos² A - Sin² A
= Sin² A sec²A - Sin²A
= Sin ² A ( sec²A - 1)
= sin² A tan²A = sin² A sin²A / cos²A
======================
ii
multiply the two terms to get
1+tan A+sec A+cot A+1+cotA SecA - CosecA - cosecA tan A - cosecA secA
= 2 + tanA + secA +cosA/sinA + cosA/sinA *1/cosA - 1/sinA - 1/sinA*sinA/cosA - 1/sinA * 1/cosA
= 2 + sinA/cosA + 1/cosA +CosA/sinA+ 1/sinA -1/sinA - 1/cosA - 1/sinA*1/cosA
= 2 + sinA/cosA + cosA/sinA - 1/sinA * 1/cosA
= 2 + (sin²A +cos²A - 1 ) / (sinA cosA)
= 2
======================
LHS 1/(cosecA- cotA) - 1/sin A
multiply numerator and denominator with (coseA+ cotA)
(cosecA + cotA)/ 1 - cosec A = cot A
RHS 1/sinA - 1/ (cosecA + cotA)
multiply numerator and denominator with (cosec A - cot A)
cosec A - (cosecA - cotA) / (cosec²A - cot²A)
= cot A
LHS = RHS = cot A
========================
(cot A + tan B) / ( cot B + tan A) =
= (cosA / sinA + sin B / cosB ) / (cosB/sinB + sin A/ cosA)
= (cosA cosB + sinA sin B) * CosA sin B / [ (cosA cosB + sinA sinB) * sinA cos B ]
= cot A tan B
as the summation term cancels.
tan² A - Sin² A = Sin²A / Cos² A - Sin² A
= Sin² A sec²A - Sin²A
= Sin ² A ( sec²A - 1)
= sin² A tan²A = sin² A sin²A / cos²A
======================
ii
multiply the two terms to get
1+tan A+sec A+cot A+1+cotA SecA - CosecA - cosecA tan A - cosecA secA
= 2 + tanA + secA +cosA/sinA + cosA/sinA *1/cosA - 1/sinA - 1/sinA*sinA/cosA - 1/sinA * 1/cosA
= 2 + sinA/cosA + 1/cosA +CosA/sinA+ 1/sinA -1/sinA - 1/cosA - 1/sinA*1/cosA
= 2 + sinA/cosA + cosA/sinA - 1/sinA * 1/cosA
= 2 + (sin²A +cos²A - 1 ) / (sinA cosA)
= 2
======================
LHS 1/(cosecA- cotA) - 1/sin A
multiply numerator and denominator with (coseA+ cotA)
(cosecA + cotA)/ 1 - cosec A = cot A
RHS 1/sinA - 1/ (cosecA + cotA)
multiply numerator and denominator with (cosec A - cot A)
cosec A - (cosecA - cotA) / (cosec²A - cot²A)
= cot A
LHS = RHS = cot A
========================
(cot A + tan B) / ( cot B + tan A) =
= (cosA / sinA + sin B / cosB ) / (cosB/sinB + sin A/ cosA)
= (cosA cosB + sinA sin B) * CosA sin B / [ (cosA cosB + sinA sinB) * sinA cos B ]
= cot A tan B
as the summation term cancels.
Similar questions