Look at the measures shown in the adjacent figure and find the area of ⬜ PQRS.
Answers
Hey Meenag !
Answer:
690 m²
Step-by-step explanation:
Given :
PQ = 56 m
QR = 25 m
RS = 15 m
SP = 36 m
∠PSR = 90°
Formula :
Area of a triangle = bh units²
- Where b is the Base.
- Where h is the Altitude.
Area of a triangle = units²
- Where a,b,c are the sides of the triangle.
- Where s is the semiperimeter of the triangle, s = .
Procedure :
ar(⬜ PQRS) = ar(ΔPRS) + ar(ΔPQR)
(i) ar(ΔPRS) = (0.5) × b × h
⇒ ar(ΔPRS) = (0.5) × 15 m × 36 m
⇒ ar(ΔPRS) = (15 × 18) m²
∴ ar(ΔPRS) = 270 m².
(ii) ar(ΔPQR) = m²
PR² = PS² + SR² [Pythagoras Theorem]
⇒ PR² = (36 m)² + (15 m)²
⇒ PR² = 1296 + 225 m²
⇒ PR² = 1521 m²
∴ PR = 39 m.
Assume that
- a = PQ = 56 m.
- b = QR = 25 m.
- c = RP = 39 m.
⇒ s =
∴ ar(ΔPQR) =
⇒ ar(ΔPQR) =
⇒ ar(ΔPQR) =
⇒ ar(ΔPQR) =
⇒ ar(ΔPQR) =
⇒ ar(ΔPQR) = (2 × 5 × 6 × 7) m²
⇒ ar(ΔPQR) = (10 × 42) m²
∴ ar(ΔPQR) = 420 m².
Finally,
ar(⬜ PQRS) = ar(ΔPRS) + ar(ΔPQR)
⇒ ar(⬜ PQRS) = 270 m² + 420 m²
∴ ar(⬜ PQRS) = 690 m².
Thanks !
Answer:
690 m²
Step-by-step explanation:
Given :
PQ = 56 m
QR = 25 m
RS = 15 m
SP = 36 m
∠PSR = 90°
Formula :
Area of a triangle = \frac{1}{2}
2
1
bh units²
Where b is the Base.
Where h is the Altitude.
Area of a triangle = \sqrt{(s)(s - a)(s - b)(s - c)}
(s)(s−a)(s−b)(s−c)
units²
Where a,b,c are the sides of the triangle.
Where s is the semiperimeter of the triangle, s = \frac{a + b + c}{2}
2
a+b+c
.
Procedure :
ar(⬜ PQRS) = ar(ΔPRS) + ar(ΔPQR)
(i) ar(ΔPRS) = (0.5) × b × h
⇒ ar(ΔPRS) = (0.5) × 15 m × 36 m
⇒ ar(ΔPRS) = (15 × 18) m²
∴ ar(ΔPRS) = 270 m².
(ii) ar(ΔPQR) = \sqrt{(s)(s - a)(s - b)(s - c)}
(s)(s−a)(s−b)(s−c)
m²
PR² = PS² + SR² [Pythagoras Theorem]
⇒ PR² = (36 m)² + (15 m)²
⇒ PR² = 1296 + 225 m²
⇒ PR² = 1521 m²
∴ PR = 39 m.
Assume that
a = PQ = 56 m.
b = QR = 25 m.
c = RP = 39 m.
⇒ s = \frac{56 + 25 + 39}{2} \ m = \frac{120}{2} \ m = 60 \ m
2
56+25+39
m=
2
120
m=60 m
∴ ar(ΔPQR) = \sqrt{(60 m)(60 m- 56 m)(60 m- 25 m)(60 m- 39m)}
(60m)(60m−56m)(60m−25m)(60m−39m)
⇒ ar(ΔPQR) = \sqrt{(60 m)(4m)(35 m)(21m)}
(60m)(4m)(35m)(21m)
⇒ ar(ΔPQR) = \sqrt{(5 \times 12 )(2 \times 2)(5 \times 7 )(3 \times 7) \ m^{4}}
(5×12)(2×2)(5×7)(3×7) m
4
⇒ ar(ΔPQR) = \sqrt{(5^{2} )(2^{2})(12 \times 3 )(7^{2}) } \ m^{2}
(5
2
)(2
2
)(12×3)(7
2
)
m
2
⇒ ar(ΔPQR) = \sqrt{(5^{2} )(2^{2})(6^{2} )(7^{2}) } \ m^{2}
(5
2
)(2
2
)(6
2
)(7
2
)
m
2
⇒ ar(ΔPQR) = (2 × 5 × 6 × 7) m²
⇒ ar(ΔPQR) = (10 × 42) m²
∴ ar(ΔPQR) = 420 m².
Finally,
ar(⬜ PQRS) = ar(ΔPRS) + ar(ΔPQR)
⇒ ar(⬜ PQRS) = 270 m² + 420 m²
∴ ar(⬜ PQRS) = 690 m².
Thanks !