Math, asked by bharghavbalajicr7, 10 months ago

look at the pic and give the answer

Attachments:

Answers

Answered by sri288
0

sorry mate i don't know the ans...

Answered by knjroopa
0

Step-by-step explanation:

If cosec theta - sin theta = m3 and sec theta - cos theta = n3 prove that

m^4n^2 + m^2n^4 = 1  

  • Given cosec theta – sin theta = m^3
  •         1/sin theta – sin theta = m^3
  •        1 – sin^2 theta / sin theta = m^3
  •       Cos^2 theta / sin theta = m^3 --------------- 1
  •     (cos^2 theta / sin theta)^2/3 = (m^3)^2/3
  •     So cos^4/3 theta / sin^2/3 theta = m^2 -----------2
  • Let sec theta – cos theta = n^3
  • 1/cos theta – cos theta = n^3
  • 1 – cos^2 theta / cos theta = n^3
  • So (sin^2 theta / cos theta) = n^3-----------3
  • So (sin^2 theta / cos theta)^2/3 = (n^3)^2/3
  • So sin^4/3 theta / cos^2/3 theta = n^2 ----------4
  • Multiply 2 and 4 we get  
  • (Cos^4/3 theta / sin^2/3 theta) x (sin^4/3 theta / cos^2/3 theta) = a^2b^2-----------5
  • So a^2 + b^2 = (cos^4/3 theta / sin^2/3 theta) + (sin^4/3 theta / cos^2/3 theta)
  •   (cos^2 theta + sin^2 theta) / (sin^2/3 theta cos^2/3 theta)  
  • = 1/sin^2/3 theta cos^2/3 theta
  • So m^2n^2 (m^2 + n^2) = 1
  • Or m^4n^2 + m^2n^4 = 1

Reference link will be

https://brainly.in/question/682984

Similar questions