Math, asked by bintmuslima, 2 months ago

looking for answers quickly

Attachments:

Answers

Answered by Anonymous
1

1)

Given that ,  \sf \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{1}{x} = \dfrac{1}{p + q + x} .

Need To Find : Value of x ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀Given that ,

\dashrightarrow \sf \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{1}{x} = \dfrac{1}{p + q + x} \:\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Solving \: the \: Given \::}}\\

\dashrightarrow \sf \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{1}{x} = \dfrac{1}{p + q + x} \:\\\\ \dashrightarrow \sf \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{1}{x} - \dfrac{1}{p + q + x}  = 0 \:\\\\ \dashrightarrow \sf \bigg[ \dfrac{1}{p} + \dfrac{1}{q}\bigg] +\bigg[  \dfrac{1}{x} - \dfrac{1}{p + q + x} \bigg]  = 0 \:\\\\ \dashrightarrow \sf \bigg[ \dfrac{p + q }{pq}\bigg] +\bigg[  \dfrac{(x + p + q )- x }{x ( p + q + x ) } \bigg]  = 0 \:\\\\\dashrightarrow \sf \bigg[ \dfrac{p + q }{pq}\bigg] +\bigg[  \dfrac{x + p + q - x }{x ( p + q + x ) } \bigg]  = 0 \:\\\\\dashrightarrow \sf \bigg[ \dfrac{p + q }{pq}\bigg] +\bigg[  \dfrac{x + p + q - x }{x ( p + q + x ) } \bigg]  = 0 \:\\\\ \dashrightarrow \sf \bigg[ \dfrac{p + q }{pq}\bigg] +\bigg[  \dfrac{ p + q }{x ( p + q + x ) } \bigg]  = 0 \:\\\\ \dashrightarrow \sf  ( p + q )   \bigg[  \dfrac{1}{pq} + \dfrac{ 1 }{x ( p + q + x ) } \bigg]  = 0 \:\\\\ \dashrightarrow \sf  ( p + q )   \bigg[ \dfrac{ x^2 + xp + xq + pq  }{ (pq) (x) ( p + q + x ) } \bigg]  = 0 \:\\\\\dashrightarrow \sf  ( p + q )  \bigg[ \dfrac{ x^2 + xq + xp + pq  }{ (pq) (x) ( p + q + x ) } \bigg]  = 0 \:\\\\ \dashrightarrow \sf  ( p + q )   \bigg[ \dfrac{ x( x + q )  + p ( x + q ) }{ (pq) (x) ( p + q + x ) } \bigg]  = 0 \:\\\\\dashrightarrow \sf  ( p + q )   \bigg[ \dfrac{ ( x + p ) ( x + q ) }{ (pq) (x) ( p + q + x ) } \bigg]  = 0 \:\\\\ \dashrightarrow \sf  \bigg[ \dfrac{ ( x + p ) ( x + q ) }{ (pq) (x) ( p + q + x ) } \bigg]  = \dfrac{0}{( p + q )} \:\\\\ \dashrightarrow \sf  \bigg[ \dfrac{ ( x + p ) ( x + q ) }{ (pq) (x) ( p + q + x ) } \bigg]  = 0 \:\\\\ \dashrightarrow \sf    ( x + p ) ( x + q )  = 0   \times (pq) (x) ( p + q + x ) \:\\\\ \dashrightarrow \sf    ( x + p ) ( x + q )  = 0  \:\\\\ \dashrightarrow \sf    \:x\:=\:-p \:\:or\:\: x \:=\:-q \:\\\\

\dashrightarrow \:\underline {\boxed{\purple {\pmb{\frak{\:\:x\:=\:-p \:\:or\:\: \:-q \:}}}}}\:\:\bigstar \:\:\\\\

\qquad \therefore \underline {\sf Hence,  The \:value \:of \: x \:can \: be \:\pmb{\bf{ - p \: or \:-q \:}}.}\\

2)

Question:-

If ( 2 - √5 )/( 2 + √5 ) =a√5 + b , then find the value of a and b.

To Find:-

Find the value of a and b.

Solution:-

\dashrightarrow\sf \: \dfrac { 2 - \sqrt { 5 } } { 2 + \sqrt { 5 } } = a \sqrt { 5 } + b

Rationalise the denominator

\dashrightarrow\sf \: \dfrac { 2 - \sqrt { 5 } } { 2 + \sqrt { 5 } } \times \dfrac { 2 - \sqrt { 5 } } { 2 - \sqrt { 5 } } = a \sqrt { 5 } + b

\dashrightarrow\sf \: \dfrac { { ( 2 - \sqrt { 5 } ) }^{ 2 } } { ( 2 + \sqrt { 5 } )( 2 - \sqrt { 5 } ) } = a \sqrt { 5 } + b

\dashrightarrow\sf \: \dfrac { 4 + 5 - 4 \sqrt { 5 } } { 4 - 5 } = a \sqrt { 5 } + b

\dashrightarrow\sf \: \dfrac { - ( 9 + 4 \sqrt { 5 } ) } { - 1 } = a \sqrt { 5 } + b

\dashrightarrow\sf \: 9 + 4 \sqrt { 5 } = a \sqrt { 5 } + b

Hence ,

a = 4 , b = 9

Attachments:
Similar questions