Math, asked by Nandu07king, 2 months ago

<br />Find (i) sin C (ii) cos C and<br />(iii) tan C in the adjacent triangle.<br />2. In a triangle XYZ, Z Y is right angle,<br />13 cm<br />5 cm<br />XZ=17cm and YZ = 15 cm, then find<br />SA<br />.<br />(i) sin X (ii) cos Z (iii) tan X<br />In a triangle PQR with right angle at Q, the value of Pis x, PQ = 7 cm and QR=<br />24 cm, then find sin x and cos x.​

Answers

Answered by iloveu56
1

Answer:

Given :-

If sin (A + B) = 1 and tan (A - B) = 1/√3

To Find :-

value of:

i) tan A+ tan B

ii) sec A- cosec B

Solution :-

We know that

sin 90 = 1

tan 30 = 1/√3

So,

sin(A + B) = 90

tan(A - B) = 30

A + B + A - B = 90 + 30

(A + A) + (B - B) = 120

2A = 120

A = 120/2

A = 60

By putting value of A in 2

A - B = 30

60 - B = 30

-B = 30 - 60

-B = -30

B = 30

Finding values

tan 60 + tan 30

We know that

tan 60 = √3

tan 30 = 1/√3

√3 + 1/√3

√3 × √3 + 1/√3

3 + 1/√3

4/√3

sec A- cosec B

sec 60 - cosec 30

We know that

sec 60 = 2

cosec 30 = 2

2 - 2 = 0

..Given :-

If sin (A + B) = 1 and tan (A - B) = 1/√3

To Find :-

value of:

i) tan A+ tan B

ii) sec A- cosec B

Solution :-

We know that

sin 90 = 1

tan 30 = 1/√3

So,

sin(A + B) = 90

tan(A - B) = 30

A + B + A - B = 90 + 30

(A + A) + (B - B) = 120

2A = 120

A = 120/2

A = 60

By putting value of A in 2

A - B = 30

60 - B = 30

-B = 30 - 60

-B = -30

B = 30

Finding values

tan 60 + tan 30

We know that

tan 60 = √3

tan 30 = 1/√3

√3 + 1/√3

√3 × √3 + 1/√3

3 + 1/√3

4/√3

sec A- cosec B

sec 60 - cosec 30

We know that

sec 60 = 2

cosec 30 = 2

2 - 2 = 0

..____________i love u 54 _______________

Step-by-step explanation:

how r u

Answered by xXCuteBoyXx01
19

_______✅ᴀɴsᴡᴇʀ ✅_______

Sin c= P/H

perpendicular = √(13)^2-(5)^2

= √144= 12

= 12/13

Cosc = √1-sin^2c

1-144/169= 5/13

TanC= sinc/cosc = 12/13/(5/13)

= 12/5

______ʜᴏᴘᴇ ɪᴛ's ʜᴇʟᴘғᴜʟ ᴛᴏ ʏᴏᴜ ____

Attachments:
Similar questions