English, asked by benudharbastia1975, 3 months ago

<br />Read the following passage and answer the questions:<br /><br />casual disregard for the law and callousness towards the environment is agai<br />n the sensitive Aravali region of Mewat in Haryana. The number of stone crus<br />along public roads in several villages like Uttarwar, Gudawali and Bajida Pah<br />olation of regulations, is a pointer to how apathetic the efforts to contain damaget<br />ent have become. These crushers, reportedly well-connected, have not only<br />the necessary permission from the Haryana Pollution Control Board but are<br />norms which demand that they maintain a certain minimum distance from the roa<br />-kilometre-long Aravali range stretches from Southern Gujarat to Haryana<br />h. They are a natural barrier against ensuring that the desert sands of the Thar dd<br />e Indo-Gangetic plains. A few decades ago, they were densely forested and rich<br />Greedy and extensive logging, mining and quarrying activities have destroyed the<br />Not only do we have less of its flora and fauna, but soil fertility, quality topsoil, and<br />le have also all been affected. Rainfall has been reduced, river channels and reser<br />d up<br />like Mewat, socio-economically one of the most backward in Haryana, are alr<br />from the effects. There is acute water scarcity in the area, with only a small percen<br />ages possessing potable water sources. Haryana has committed itself to enforca<br />Court's order on banning mining, and it must ensure that there is no laxity in<br />one quarries pose other challenges as well. The unscrupulous among the quarry ow<br />h known to employ bonded labour at extremely low pay. There have been many do<br />Sous lung disorders, and young children continue to be employed on them.<br />ent needs to act against the prevailing cocktail of complicity, cynicism and apath<br />h will be irretrievably ruined.​

Answers

Answered by arizonaandrew418
1

Answer:

universe (Latin: universus) is all of space and time[a] and their contents,[10] including planets, stars, galaxies, and all other forms of matter and energy. While the spatial size of the entire universe is unknown,[3] it is possible to measure the size of the observable universe, which is currently estimated to be 93 billion light-years in diameter. In various multiverse hypotheses, a universe is one of many causally disconnected[11] constituent parts of a larger multiverse, which itself comprises all of space and time and its contents.[12]

Universe

NASA-HS201427a-HubbleUltraDeepField2014-20140603.jpg

The Hubble Ultra-Deep Field image shows some of the most remote galaxies visible with present technology, each consisting of billions of stars. (Apparent image area about 1/79 that of a full moon)[1]

Age (within Lambda-CDM model)

13.799 ± 0.021 billion years[2]

Diameter

Unknown.[3] Diameter of the observable universe: 8.8×1026 m (28.5 Gpc or 93 Gly)[4]

Mass (ordinary matter)

At least 1053 kg[5]

Average density (including the contribution from energy)

9.9 x 10−30 g/cm3[6]

Average temperature

2.72548 K (-270.4 °C or -454.8 °F)[7]

Main contents

Ordinary (baryonic) matter (4.9%)

Dark matter (26.8%)

Dark energy (68.3%)[8]

Shape

Flat with a 0.4% margin of error[9]

The earliest cosmological models of the universe were developed by ancient Greek and Indian philosophers and were geocentric, placing Earth at the center.[13][14] Over the centuries, more precise astronomical observations led Nicolaus Copernicus to develop the heliocentric model with the Sun at the center of the Solar System. In developing the law of universal gravitation, Isaac Newton built upon Copernicus' work as well as Johannes Kepler's laws of planetary motion and observations by Tycho Brahe.

Further observational improvements led to the realization that the Sun is one of hundreds of billions of stars in the Milky Way, which is one of at least two trillion galaxies in the universe. Many of the stars in our galaxy have planets. At the largest scale, galaxies are distributed uniformly and the same in all directions, meaning that the universe has neither an edge nor a center. At smaller scales, galaxies are distributed in clusters and superclusters which form immense filaments and voids in space, creating a vast foam-like structure.[15] Discoveries in the early 20th century have suggested that the universe had a beginning and that space has been expanding, since then,[16] and is currently still expanding at an increasing rate.[17]

The Big Bang theory is the prevailing cosmological description of the development of the universe. According to estimation of this theory, space and time emerged together 13.799±0.021 billion years ago[2] and the energy and matter initially present have become less dense as the universe expanded. After an initial accelerated expansion called the inflationary epoch at around 10−32 seconds, and the separation of the four known fundamental forces, the universe gradually cooled and continued to expand, allowing the first subatomic particles and simple atoms to form. Dark matter gradually gathered, forming a foam-like structure of filaments and voids under the influence of gravity. Giant clouds of hydrogen and helium were gradually drawn to the places where dark matter was most dense, forming the first galaxies, stars, and everything else seen today. It is possible to see objects that are now further away than 13.799 billion light-years because space itself has expanded, and it is still expanding today. This means that objects which are now up to 46.5 billion light-years away can still be seen in their distant past, because in the past, when their light was emitted, they were much closer to Earth.

From studying the movement of galaxies, it has been discovered that the universe contains much more matter than is accounted for by visible objects; stars, galaxies, nebulas and interstellar gas. This unseen matter is known as dark matter[18] (dark means that there is a wide range of strong indirect evidence that it exists, but we have not yet detected it directly). The ΛCDM model is the most widely accepted model of our universe. It suggests that about 69.2%±1.2% [2015] of the mass and energy in the universe is a cosmological constant (or, in extensions to ΛCDM, other forms of dark energy, such as a scalar field) which is responsible for the current expansion of space, and about 25.8%±1.1% [2015] is dark matter.[19] Ordinary ('baryonic') matter is therefore only 4.84%±0.1% [2015] of the physical universe.[19] Stars, planets, and visible gas clouds only form about 6% of ordinary matter, or about 0.29% of the entire universe.[20]

There are many competing hypotheses about the ultimate fate of the universe and about what, if anything, preceded the Big Bang, while other physicists and philosophers refuse to speculate, doubting that information about prior states will ever be accessible.

Similar questions