Physics, asked by umapatitonjam, 9 months ago

<br/>\large{\green{\boxed{\bold{\blue{\: question:}}}}}<br/>
a constant retardation force of 50 N is applied to a body of mass 30 kg moving initially with a speed of 18 m/s .How long does the body take to come to a hault?​

Answers

Answered by Anonymous
1

\huge{\underline{\mathfrak{\green{Answer}}}}

\large{\star{\gray{\sf{Given}}}}

  • Force (f) = 50 N

  • Mass of object (m) = 30 kg

  • Initial Velocity (v) = 18 m/s

\rule{200}{2}

\large{\star{\gray{\sf{To \:  Find}}}}

We have to find the time taken by object.

\rule{200}{2}

\large{\star{\gray{\sf{Solution}}}}

We know that

\Large{\star{\boxed{\boxed{\purple{\sf{Retardation = \frac{Force}{Mass}}}}}}}

______________[Put Values]

\sf{→Retardation = \frac{50}{30}} \\ \\ \sf{→Retardation = 1.667 \: ms^{-2}}

Since, there is retardation so a will be negative.

\large{\star{\boxed{\boxed{\orange{\sf{Retardation (a) = -1.667 \: ms^{-2}}}}}}}

\rule{200}{2}

Now, We are using first equation of motion.

\Large{\star{\boxed{\boxed{\purple{\sf{v = u + at}}}}}}

______________[Put Values]

\sf{→0 = 18 + (-1.667)t} \\ \\ \sf{→-18 = (-1.667)t} \\ \\ \sf{→t = \frac{-18}{-1.667}} \\ \\ \sf{→t = 7.97}

\large{\star{\boxed{\boxed{\orange{\sf{Time \: taken = 7.97 \: seconds}}}}}}

Similar questions