Math, asked by ayushstjoseph, 10 months ago

Lt log sec2x/logsecx
X->0
Plus Help. It's urgent!!!

Answers

Answered by Anonymous
5

Answer:

\large\boxed{\sf{2}}

Step-by-step explanation:

To evaluate the given limit,

\displaystyle\lim_{x\to0} \dfrac{ log( \sec(2x) ) }{ log( \sec(x) ) }

But, we know that,

  •  \sec( \alpha )  =  \dfrac{1}{ \cos( \alpha ) }

Therefore, we will get,

 = \displaystyle\lim_{x\to0}  \dfrac{  log( \frac{1}{ \cos(2x) } )  }{  log( \frac{1}{  \cos (x) } ) }

But, we know that,

  •  log( \dfrac{x}{y} )  =  log( x )  -  log(y)

Therefore, we will get,

 = \displaystyle\lim_{x\to0} \dfrac{ log(1) -  log( \cos(2x) )  }{ log(1)  -  log( \cos(x) ) }

But, we know that,

  •  log(1)  = 0

Therefore, we will get,

 = \displaystyle\lim_{x\to0} \dfrac{ -  log( \cos(2x) ) }{ -  log( \cos(x) ) }  \\  \\  = \displaystyle\lim_{x\to0} \dfrac{ log( \cos(2x) ) }{ log( \cos(x) ) }

Now, applying L Hospitals rule, i.e., differentiatiating both numerator and denominator separately, we will get,

 = \displaystyle\lim_{x\to0} \dfrac{ \dfrac{1}{ \cos(2x) } \times 2 \cos(x) \cancel{( -  \sin(x)) }  }{ \dfrac{1}{ \cos(x) } \times  \cancel{( -  \sin(x))}  } \\  \\  =  \displaystyle\lim_{x\to0} \dfrac{2 { \cos }^{2}x }{ \cos2x}

Now, substituting the limits, we get,

 =  \dfrac{2 { \cos }^{2} 0 \degree}{ \cos0 \degree }  \\  \\  =  \dfrac{2 \times 1}{1}  \\  \\  = 2

Hence, the required value is 2

Similar questions