Math, asked by ayushstjoseph, 11 months ago

Lt X tends to 0 cos2x-cosx/sin^2x
Solve only using L'hopital rule

Answers

Answered by ITzBrainlyGuy
10

Question

lim_{x→1}( \frac{ \cos(2x) +  \cos(x) ) }{ { \sin(x) }^{2} } )

Answer

Using L'Hopital's rule

L'Hopital's rule : since evaluating the limits of the numerator and the denominator would result in an intermediate form

lim_{x→0}( \frac{ \frac{dx}{dy} ( \cos(2x) -  \cos(x)  }{ \frac{dx}{dy} ( { \sin(x) }^{2} )} )

Calculate the derivatives

lim_{x→0}( \frac{ - 2 \sin(2x) -  \sin(x)  }{ \sin(2x) } )

Expand the expression

lim_{x→0}(  \frac{ - 2 \times 2 \sin(x)  \cos(x)  +  \sin(x) }{2 \sin(x)  \cos(x) } )

Factor the expression

lim_{x→0}( \frac{ -  \sin(x)(2 \times 2 \cos(x)   - 1)}{2 \sin(x)  \cos(x) } )

Reduce multiply

lim_{x→0}( \frac{ - (4 \cos(x) - 1) }{2 \cos(x) }  )

Rewrite the fraction

 lim_{x→0}( \frac{1 - 4 \cos(x) }{2 \cos(x) } )

Evaluate the limit & simplify the expression

lim_{x→0}( \frac{1 - 4 \cos(0) }{2 \cos(0) } )

 =  \frac{ - 3}{2}

Similar questions