Math, asked by Kehkasha7011, 1 year ago

Lt x tends to pi/6 (2-sqrt(3) cosx - sinx)/(6x-pi)2

Answers

Answered by kumarsriram19p62r7g
17
hey hi frd check this out
Attachments:
Answered by Anonymous
8

The limit of the given function is

\lim_{x \to \frac{\pi }{6} \1} \frac{2-\sqrt{3}cosx-sinx }{(6x-\pi) ^2} = \frac{1}{36}

  • Solving the given limit, we have

         \lim_{x \to \frac{\pi }{6} \1} \frac{2-\sqrt{3}cosx-sinx }{(6x-\pi) ^2}

      Taking 2 common from the numerator, we get

        \lim_{x \to \frac{\pi }{6} \1} \frac{2(1-\frac{\sqrt{3}}{2}cosx-\frac{1}{2} sinx) }{(6x-\pi) ^2}      - (1)

  • Now, we know that

               cos\frac{\pi }{6} = \frac{\sqrt{3} }{2} \\and sin\frac{\pi }{6} = \frac{ 1}{2}

    therefore (1) can be written as

        =\lim_{x \to \frac{\pi }{6} \1} \frac{2(1-cosxcos\frac{\pi }{6} - sinxsin\frac{\pi }{6}) }{(6x-\pi) ^2}\\=\lim_{x \to \frac{\pi }{6} \1} \frac{2(1-(cosxcos\frac{\pi }{6}+ sinxsin\frac{\pi }{6})) }{(6x-\pi) ^2}\\

  • Now, Using the identity

       cos(A-B) =cosAcosB + sinA sinB

       we get,

      =\lim_{x \to \frac{\pi }{6} \1} \frac{2(1-cos(x-\frac{\pi }{6} )) }{(6x-\pi) ^2}\\

      =2\lim_{x \to \frac{\pi }{6} \1} \frac{1-cos(x-\frac{\pi }{6} )}{(6x-\pi) ^2}\\

  • Using the the double angle formula for cosine that is

         cos2A = 1 - 2sin^2A\\1 - cos2A= 2sin^2A

        we get,

         =2\lim_{x \to \frac{\pi }{6} \1} \frac{ 2sin^2(\frac{6x-\pi }{12} )}{(6x-\pi) ^2}\\

         =4\lim_{x \to \frac{\pi }{6} \1} \frac{ sin^2(\frac{6x-\pi }{12} )}{144(\frac{6x-\pi }{12})^2}

  • Now, using standard sine limit that is,

          \lim_{x \to 0\1} \frac{sinx}{x} = 1, we get

          =4\lim_{x \to \frac{\pi }{6} \1} \frac{ sin^2(\frac{6x-\pi }{12} )}{144(\frac{6x-\pi }{12})^2}=4( \frac{1}{144})\\=\frac{1}{36}

           Therefore we get,

             \lim_{x \to \frac{\pi }{6} \1} \frac{2-\sqrt{3}cosx-sinx }{(6x-\pi) ^2} = \frac{1}{36}

Similar questions