Math, asked by Gurujeet, 11 months ago

✌❤ ₱Lz SøLv€ ¡t .....✌❤​

Attachments:

Answers

Answered by CharmingPrince
13

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆

Prove: \\ cos^2\theta . cos^2\beta - sin^2 \theta . sin^2 \beta = cos^\theta - sin^2 \beta

□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆□☆

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

\boxed{\red{\bold{Solving\:LHS:}}}

\purple{\implies cos^2\theta . cos^2 \beta - sin^2 \theta . sin^2 \beta}

\purple{\implies}cos^2 \theta (1-sin^2 \beta) - (1-cos^2 \theta)sin^2 \beta

\blue{(\because sin^2 \Phi + cos^2 \Phi = 1)}

\green{\implies cos^2 \theta - cos^2 \theta sin^2\beta -sin ^2\beta + cos^2 \theta sin^2 \beta}

\green{\implies{\boxed{\bold{cos^2 \theta - sin^2 \beta = RHS}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Answered by MrBhukkad
1

 \huge{ \bigstar}\huge{\mathcal{ \overbrace{ \underbrace{ \pink{ \fbox{ \green{ \blue{S} \pink{o} \red{l} \green{u} \purple{t} \blue{i} \green{o} \red{n}}}}}}}}  \huge{ \bigstar}

  \boxed{ \red{ \mathfrak{Solving \: L.H.S. : }}}

 \\  \\  \bf{Formulas \: used:-} \\  \boxed{ \bf{ {sin}^{2}A +  {cos}^{2}A = 1  }} \\  \\ ⟹  \orange{\bf{ {cos}^{2} \theta. {cos}^{2} \beta -  {sin}^{2} \theta. {sin}^{2}  \beta    } } \\ ⟹ \bf{ {cos}^{2} \theta.(1 -  {sin}^{2} \beta ) - (1 -  {cos}^{2} \theta). {sin}^{2} \beta     } \\ ⟹ \bf{ {cos}^{2} \theta -  {cos}^{2} \theta. {sin}^{2}  \beta  -  {sin}^{2}    \beta  +  {cos}^{2} \theta. {sin}^{2} \beta   } \\ ⟹ { \orange{ \boxed{ \bf{ \purple{ {cos}^{2} \theta -  {sin}^{2} \beta  = R.H.S. } }}}}

Similar questions