Math, asked by vivekparmar090, 4 months ago

m+1/m=5 find [m²+1/m²]and [m⁴+1/m⁴]

Answers

Answered by vipashyana1
0

Answer:

 {m}^{2}  +  \frac{1}{ {m}^{2} }  = 23 \\  {m}^{4}  +  \frac{1}{ {m}^{4} }  = 527

Step-by-step explanation:

m +  \frac{1}{m}  = 5 \\ squaring \: on \: both \: the \: sides \\  {(m +  \frac{1}{m}) }^{2}  =  {(5)}^{2}  \\  {(m)}^{2}  +  { (\frac{1}{m} )}^{2}  + 2(m)( \frac{1}{m} ) = 25 \\  {m}^{2}  +  \frac{1}{ {m}^{2} }  + 2 = 25 \\  {m}^{2}  +  \frac{1}{ {m}^{2} }  = 25 - 2 \\  {m}^{2}  +  \frac{1}{ {m}^{2} }  = 23 \\ squaring \: on \: both \: the \: sides \\  {( {m}^{2}  +  \frac{1}{ {m}^{2} }) }^{2}  =  {(23)}^{2}  \\  { ({m}^{2} )}^{2}  +   {( \frac{1}{ {m}^{2} } )}^{2}   + 2( {m}^{2} )( \frac{1}{ {m}^{2} } ) = 529 \\  {m}^{4}  +  \frac{1}{ {m}^{4} }  + 2 = 529 \\  {m}^{4}  +  \frac{1}{ {m}^{4} }  = 529 - 2 \\  {m}^{4}  +  \frac{1}{ {m}^{4} }  = 527

Similar questions