((m!)^2) + 23 is a perfect square, how many values can m take
Answers
Answer:
no such value of m
Step-by-step explanation:
((m!)²) + 23 is a perfect square
Let say m! = a
a² + 23 = b²
=> b > a
Case 1
if b = a + 1
then
a² + 23 = (a + 1)²
=> a² + 23 = a² + 1 + 2a
=> a = 11 & b = 12
11 can not be m!
case 2
if b = a + 2
then
a² + 23 = (a + 2)²
=> a² + 23 = a² + 4 + 4a
=> a is not an integer
not possible
Case 3
if b = a + 3
then
a² + 23 = (a + 3)²
=> a² + 23 = a² + 9 + 6a
=> a is not an integer
not possible
case 4
if b = a + 4
then
a² + 23 = (a + 4)²
=> a² + 23 = a² + 16 + 8a
=> a is not an integer
not possible
case 4
if b = a + 5
then
a² + 23 = (a + 5)²
=> a² + 23 = a² + 25 + 10a
=> (a + 5)² > a² + 23
not possible
& no further Solution
So no such value of m Exists for which ((m!)²) + 23 is a perfect square
if it wold have been 2³ instead of 23
them m = 1
1! = 1
1² + 2³ = 9 = 3²