Math, asked by aru55, 1 year ago

m^4-18m^2n^2+81n^4 factorise

Answers

Answered by Anant02
18

 {m}^{4}  - 18 {m}^{2}  {n}^{2}  + 81 {n}^{4}  \\  =  {( {m}^{2} - 9 {n}^{2}  )}^{2}  \\  =  {(m + 3n)}^{2}  {(m - 3n)}^{2}

nobel: sorry your answer was suddenly reported
Anant02: but why
Anant02: my ans is correct
nobel: Mistakenly sorry
Anant02: ok
Answered by nobel
20
Factorisation,

We have,
 {m}^{4} - 18 {n}^{2} {m}^{2} + 81 {n}^{4}

= m⁴ - 9m².n²- 9m².n²+ 81n⁴

= m²(m²- 9n²) - 9n²(m²-9n²)

= (m²-9n²)(m²- 9n²)

= {m²- (3n)²}{m²- (3n)²}

= (m + 3n)(m - 3n)(m + 3n)(m - 3n)

Or you can do it in this way,
Using the formula,a²-2ab+b² = (a-b)²
ok,

Now,
 {m}^{4} - 18 {n}^{2} {m}^{2} + 81 {n}^{4}

= (m²)²-2×9n×m + (9n²)²

= (m²- 9n²)²

= (m²-9n²)(m²- 9n²)

= {m²- (3n)²}{m²- (3n)²}

= (m + 3n)(m - 3n)(m + 3n)(m - 3n)

That's it
Hope it helped (*^_^*)
Attachments:
Similar questions