M=cos theta-sin theta and n=cos theta +sin theta, then show that sqrt m/n+ sqrt n/m= 2/ sqrt ( 1- tan^2 theta
Answers
Answered by
8
LHS
√(m/n) +√(n/m) = √[(cosθ-sinθ)/(cosθ +sinθ)] +√[(cosθ+sinθ)/(cosθ -sinθ)]
=[√(cosθ-sinθ)² +√(cosθ+sinθ)²]/(√(cosθ+sinθ)(cosθ-sinθ)
=[(cosθ-sinθ)+(cosθ+sinθ)]/√(cos²θ-sin²θ)
=2cosθ/√(cos²θ-sin²θ)
=2√cos²θ/√(cos²θ-sin²θ)
=2√[cos²θ/(cos²θ-sin²θ)]
dividing numerator and denominator by √cos²θ
=2/√[(cos²θ/cos²θ) - (sin²θ/cos²θ)]
=2/√(1-tan²θ)
= RHS
√(m/n) +√(n/m) = √[(cosθ-sinθ)/(cosθ +sinθ)] +√[(cosθ+sinθ)/(cosθ -sinθ)]
=[√(cosθ-sinθ)² +√(cosθ+sinθ)²]/(√(cosθ+sinθ)(cosθ-sinθ)
=[(cosθ-sinθ)+(cosθ+sinθ)]/√(cos²θ-sin²θ)
=2cosθ/√(cos²θ-sin²θ)
=2√cos²θ/√(cos²θ-sin²θ)
=2√[cos²θ/(cos²θ-sin²θ)]
dividing numerator and denominator by √cos²θ
=2/√[(cos²θ/cos²θ) - (sin²θ/cos²θ)]
=2/√(1-tan²θ)
= RHS
Similar questions