M=cosQ+sinQ and N=cosQ-sinQ
Now prove that,
(1-N)÷(M-1)=cosQ÷(1-sinQ)
Answers
Answered by
2
Answer:
\begin{gathered}=\bold{\sqrt{\frac{m}{n}}}+\bold{\sqrt{\frac{n}{m}}}\\\\=\bold{\frac{(m+n)}{\sqrt{mn}}}\end{gathered}
=
n
m
+
m
n
=
mn
(m+n)
now, m = cosq - sinq , n = cosq + sinq
( m + n) = (cosq - sinq) + (cosq + sinq )
= 2cosq
mn = (cosq - sin)(cosq + sinq) = cos²q - sin²q [ as you know, a² -b² = (a -b)(a + b)]
= (cos²q - sin²q)/(sin²q + cos²q) [ as we know, sin²x + cos²x = 1 ]
= (1 - tank)/(1 + tan²q) [ after dividing with cos²q both numerator and denominator]
now,
LHS = (m + n)/√mn
= 2cosq/√{(1 - tan²q)/(1 + tan²q)}
= 2cosq/√{(1 - tan²q)/sec²q} [ sec²x = 1 + tan²x]
= 2cosq.secq/√(1 - tan²q)
= 2/√(1 - tan²q) = RHS
Similar questions