M is any point inside the triangle PM is produced to meet QR in N and prove that angle QMN greater than angle QPR a
Answers
Answered by
28
In the figure , we can say that-
angleQPN + anglePQM = angleQMN, hence we can say that
i) angle QMN angle QPN , hence prooved
angleMQR
angleMRQ
angleMQR + angleMRQ
180 - (angleMQR + angleMRQ) 180 - (anglePQR + anglePRQ) Since 180 - (angleMQR + angleMRQ) = angleQMR and 180 - (anglePQR + anglePRQ) = angleQPR
ii) angleQMR angleQPR , hence prooved
angleQPN + anglePQM = angleQMN, hence we can say that
i) angle QMN angle QPN , hence prooved
angleMQR
angleMRQ
angleMQR + angleMRQ
180 - (angleMQR + angleMRQ) 180 - (anglePQR + anglePRQ) Since 180 - (angleMQR + angleMRQ) = angleQMR and 180 - (anglePQR + anglePRQ) = angleQPR
ii) angleQMR angleQPR , hence prooved
Similar questions