m+nP2 =56, m-nP2 =30 the values of m and n
Answers
Solution:-
Given:
ᵐ⁺ⁿP₂ = 56
ᵐ⁻ⁿP₂ = 30
To find:
(m,n)
Answer:
We know, ⁿPᵣ =
∴ ᵐ⁺ⁿP₂ = ----------(1)
and
ᵐ⁻ⁿP₂ = ----------(2)
(m+n)! = (m+n)(m+n-1)(m+n-2)(m+n-3)... ----------(3)
(m-n)! = (m-n)(m-n-1)(m-n-2)(m-n-3)... ----------(4)
(m+n-2)! = (m+n-2)(m+n-3)(m+n-4)... ----------(5)
(m-n-2)! = (m-n-2)(m-n-3)(m-n-4)... ----------(6)
Substitute (3) and (5) in (1) and (4) and (6) in (2)
We get:
ᵐ⁺ⁿP₂ = = 56
ᵐ⁻ⁿP₂ = = 30
Dividing, we get:
ᵐ⁺ⁿP₂ = (m+n)(m+n-1) ----------(7)
ᵐ⁻ⁿP₂ = (m-n)(m-n-1) -----------(8)
Trying to solve this will result in a Quadratic equation in two variables/ To avoid that, consider:
m+n = u ----------(9)
m-n = v ----------(10)
Substitute (9) in (7) and (10) in (8)
ᵐ⁺ⁿP₂ = u(u-1)
ᵐ⁻ⁿP₂ = v(v-1)
ᵐ⁺ⁿP₂ = u² - u = 56
u² - u = 56
u² - u - 56 = 0
Splitting the middle term
u² - 8u + 7u - 56 = 0
u(u - 8) + 7(u - 8) = 0
u + 7 = 0
u - 8 = 0
∴ u = -7 and 8
But, u ≠ -7 ∵ u = n ∈ N
∴u = 8
Similarly, m-n = v
∴ v(v-1) = 30
v² - v = 30
v² - v - 30 = 0
Splitting the middle term,
v² - 6v + 5v - 30 = 0
v(v - 6) + 5(v - 6) = 0
v + 5 = 0
v - 6 = 0
∴ v = -5 and 6
But v ≠ -5 ∵ v = n ∈ N
∴ v = 6 = m-n
∴ m + n = u = 8 ----------(11)
m - n = v = 6 ----------(12)
Add (11) and (12)
m + n + m - n = 8 + 6
2m = 14
m = 7
∵ m + n = 8,
∴ 7 + n = 8
n = 1
∴(m,n) = (7,1)
Hope it helps, byeeee