Math, asked by shifusifan, 7 months ago

m2 - 5 m = -3 solve with complete square method​

Answers

Answered by Anonymous
4

Answer:

\sf{The \ roots \ of \ the \ given \ equation \ are}

\sf{\dfrac{5+\sqrt{13}}{2} \ and \ \dfrac{5-\sqrt{13}}{2}.}

Given:

\sf{m^{2}-5m=-3}

To find:

\sf{Roots \ of \ the \ equation \ by \ completing  \ square \ method.}

Solution:

\sf{\leadsto{m^{2}-5m=-3}}

__________________

\sf{(\dfrac{1}{2}\times \ Coefficient \ of \ x)^{2}}

\sf{=[\dfrac{1}{2}\times \ (-5)]^{2}}

\sf{=\dfrac{25}{4}}

__________________

\sf{Add \ \dfrac{25}{4} \ on \ both \ the \ sides, \ we \ get}

\sf{\leadsto{m^{2}-5m+\dfrac{25}{4}=-3+\dfrac{25}{4}}}

\sf{\leadsto{(m-\dfrac{5}{2})^{2}=\dfrac{13}{4}}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{\leadsto{m-\dfrac{5}{2}=\pm\dfrac{\sqrt{13}}{2}}}

\sf{\leadsto{m=\dfrac{5\pm\sqrt{13}}{2}}}

\sf\purple{\tt{\therefore{The \ roots \ of \ the \ given \ equation \ are}}}

\sf\purple{\tt{\dfrac{5+\sqrt{13}}{2} \ and \ \dfrac{5-\sqrt{13}}{2}.}}

Similar questions