Math, asked by PrakashSolanki, 1 year ago

m²-m-1=0 find the quadratic equations​

Answers

Answered by nehab177
2

Step-by-step explanation:

m^2-m-1=0

a=1 b=-1 c=-1

 m =  - b  \binom{ + }{ - } \sqrt{b { }^{2} }  - 4ac \div 2a

1(+-)

1 \binom{  + }{ - }  \sqrt{( - 1) {}^{2} }  - 4(1)( - 1) \div 2(1) \\ 1 \binom{ + }{ - }  \sqrt{1 + 4 }  \div 2 \\  \\ 1 \binom{ + }{ - }  \sqrt{5 }  \div 2 \\   case1 = 1 +  \sqrt{5 }  \div 2 \\ case2 = 1 -  \sqrt{5}  \div 2

Answered by charliejaguars2002
4

Answer:

\Large\boxed{M=\frac{1+\sqrt{5}}{2},\:M=\frac{1-\sqrt{5}}{2}}

Step-by-step explanation:

GIVEN:

\Large\boxed{\textnormal{LESSON: QUADRATIC EQUATIONS}}

\Large\boxed{\textnormal{SUBJECT: MATH }}}

Isolate by the m from one side of the equation.

SOLUTIONS:

First, you have to use quadratic equations formula.

\Large\boxed{\textnormal{QUADRATIC EQUATIONS FORMULA}}

\displaystyle AX^2+BX+C=0

\displaystyle \frac{-B\pm \sqrt{B^2-4AC}}{2A}

A=1

B=(-1)

C=(-1)

Rewrite the problem down.

\displaystyle \frac{-\left(-1\right)\pm \sqrt{\left(-1\right)^2-4*\:1\left(-1\right)}}{2*\:1}

Solve. (Simplify to find the answer!)

\displaystyle \frac{-\left(-1\right)\pm \sqrt{\left(-1\right)^2-4*\:1\left(-1\right)}}{2*\:1}=\frac{1+\sqrt{5} }{2}=\frac{1-\sqrt{5} }{2}

\displaystyle \boxed{\frac{1+\sqrt{5} }{2}=\frac{1-\sqrt{5} }{2} }}

\Large\boxed{M=\frac{1+\sqrt{5} }{2},\quad M=\frac{1-\sqrt{5} }{2} }

Therefore, the final answer is m=1+√5/2, m=1-√5/2.

Similar questions