Art, asked by dipalikayande714, 9 hours ago

मामूच्या स्वभावातील विविध पैलूंचे विश्लेषण करा.​

Answers

Answered by ashfiyasheikh58
0

Answer:

Given :

Two points (5,6) and (3,-4)

To Find :

A point on the y axis which is equidistant from the point A(5,6) and (3,-4).

To Find :

Firstly we will find The Distance of AP :

\longmapsto\tt{{x}_{1}=5}⟼x

1

=5

\longmapsto\tt{{y}_{1}=6}⟼y

1

=6

\longmapsto\tt{{x}_{2}=0}⟼x

2

=0

\longmapsto\tt{{y}_{2}=y}⟼y

2

=y

Using Formula :

\longmapsto\tt\boxed{Distance\:Formula=\sqrt{({{x}_{2}-{x}_{1)}}^{2}+({{y}_{2}-{y}_{1)}}^{2}}}⟼

DistanceFormula=

(x

2

−x

1)

2

+(y

2

−y

1)

2

Putting Values :

\longmapsto\tt{\sqrt{({0-5)}^{2}+({y-6)}^{2}}}⟼

(0−5)

2

+(y−6)

2

\longmapsto\tt\bf{\sqrt{25+{y}^{2}+36-12y}}⟼

25+y

2

+36−12y

Similarly ,

For PB :

\longmapsto\tt{{x}_{1}=0}⟼x

1

=0

\longmapsto\tt{{y}_{1}=y}⟼y

1

=y

\longmapsto\tt{{x}_{2}=3}⟼x

2

=3

\longmapsto\tt{{y}_{2}=-4}⟼y

2

=−4

Using Formula :

\longmapsto\tt\boxed{Distance\:Formula=\sqrt{({{x}_{2}-{x}_{1)}}^{2}+({{y}_{2}-{y}_{1)}}^{2}}}⟼

DistanceFormula=

(x

2

−x

1)

2

+(y

2

−y

1)

2

Putting Values :

\longmapsto\tt{\sqrt{({3-0)}^{2}+({-4-y)}^{2}}}⟼

(3−0)

2

+(−4−y)

2

\longmapsto\tt\bf{\sqrt{9+16+{y}^{2}-8y}}⟼

9+16+y

2

−8y

Now ,

\longmapsto\tt{AP=PB}⟼AP=PB

\longmapsto\tt{\sqrt{25+{y}^{2}+36-12y}=\sqrt{9+16+{y}^{2}-8y}}⟼

25+y

2

+36−12y

=

9+16+y

2

−8y

\longmapsto\tt{25+{{\cancel{y}^{2}}}+36-12y-9-16-{{\cancel{y}^{2}}}+8y=0}⟼25+

y

2

+36−12y−9−16−

y

2

+8y=0

\longmapsto\tt{25-9-16+36-12y+8y=0}⟼25−9−16+36−12y+8y=0

\longmapsto\tt{16-16+36-4y=0}⟼16−16+36−4y=0

\longmapsto\tt{36=4y}⟼36=4y

\longmapsto\tt{\cancel\dfrac{36}{4}=y}⟼

4

36

=y

\longmapsto\tt\bf{9=y}⟼9=y

So ,The Points are (0,9) .

Similar questions