Math, asked by prateeks4821, 1 year ago

मान ज्ञात कीजिए: (i)  \sin 75^{\circ} (ii)  \tan 15^{\circ}

Answers

Answered by kishan2247
0

sin75°=sin(90°-75°)

= cos15°

and tan15°=tan(90°-15°)

=cot75°

Answered by kaushalinspire
1

Answer:

Step-by-step explanation:

(i) ∵ sin( A+B )  = sinA cosB + cosA sinB

sin75°  =   sin( 45°+30° )

          =   sin45° cos30° + cos45° sin30°

          = \frac{1}{\sqrt{2} } \frac{\sqrt{3} }{2}+ \frac{1}{\sqrt{2} } \frac{1}{2}

         =  \frac{\sqrt{3} }{2\sqrt{2} } + \frac{1}{\sqrt{2} }

          =  \frac{\sqrt{3} +1}{2\sqrt{2} }

sin75° =  \frac{\sqrt{3} +1}{2\sqrt{2} }

(ii)  tan15°

    tan15°  =  tan ( 45° - 30° )

               =  \frac{tan45-tan30}{1+tan45 tan30}

               =  \frac{1-\frac{1}{\sqrt{3} } }{1+1\frac{1}{\sqrt{3} } }

              =  \frac{\frac{\sqrt{3} -1}{\sqrt{3} } }{\frac{\sqrt{3} +1}{\sqrt{3} } }

              =  \frac{\sqrt{3} -1}{\sqrt{3} +1}

              =  \frac{\sqrt{3} -1}{\sqrt{3} +1} × \frac{\sqrt{3} -1}{\sqrt{3} -1}

             =  \frac{(\sqrt{3} )^{2} -2\sqrt{3} +(1)^{2}}{3-1}

            =  \frac{3-2\sqrt{3} +1}{2}

           =   \frac{4-2\sqrt{3} }{2}

           =  2-\sqrt{3}

Similar questions